精英家教网 > 高中数学 > 题目详情
3.已知函数y=f(x)(x∈R)的图象如图所示,f′(x)是f(x)的导函数,则不等式(x-1)f′(x)<0的解集为(  )
A.(-∞,$\frac{1}{2}$)∪(1,2)B.(-1,1)∪(1,3)C.(-1,$\frac{1}{2}$)∪(3,+∞)D.(-∞,-1)∪(3,+∞)

分析 先由(x-1)f'(x)<0,分成x-1>0且f'(x)<0或x-1<0且f'(x)>0两种情况分别讨论即可

解答 解:当x-1>0,即x>1时,f'(x)<0,
即找在f(x)在(1,+∞)上的减区间,
由图象得,1<x<2;
当x-1<0时,即x<1时,f'(x)>0,
即找f(x)在(-∞,1)上的增区间,
由图象得,x<$\frac{1}{2}$.
故不等式解集为(-∞,$\frac{1}{2}$)∪(1,2)
故选:A.

点评 高中阶段,导数是研究函数性质,如单调性,最值性的重要工具.本题中,也是根据图象,将函数的单调性转化成导函数的正负.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.在三棱锥P-ABC中,若PA=PB=BC=AC=5,PC=AB=4$\sqrt{2}$,则其的外接球的表面积为41π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若集合A={x|x>0},B={x|x<4},则∁A(A∩B)等于(  )
A.{x|x<0}B.{x|0<x<4}C.{x|x≥4}D.R

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知y=f(x)是定义在 R 上的奇函数,且y=f(x+$\frac{π}{2}$)为偶函数,对于函数y=f(x)有下列几种描述:
①y=f(x)是周期函数;
②x=π是它的一条对称轴;
③(-π,0)是它图象的一个对称中心;
④x=$\frac{π}{2}$是它的一条对称轴. 
其中描述正确的是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设f(x)是连续的偶函数,且当x>0时,f(x)是单调函数,则满足f(x)=f($\frac{x+2015}{x+2016}$)的所有x之和为(  )
A.-4031B.-4032C.-4033D.-4034

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设f(x)=ax2-(a+1)x+1
(1)解关于x的不等式f(x)>0;
(2)若对任意的a∈[-1,1],不等式f(x)>0恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设等差数列{an}的前n项和为Sn,已知a3=6,S3=15.
(1)求{an}的首项a1和公差d的值;
(2)设数列{bn}满足:对任意的正整数n,都有a1b1+a2b2+a3b3+…+anbn=(n2+n)•2n+1.求数列{bn}的通项公式bn及前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知f(x)=ex-ax-1(x∈R)
(1)当a>0时f(x)的单调区间.
(2)若f(x)在定义域R内单调递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.用根式的形式表示下列各式(a>0):
${a}^{\frac{1}{2}}$,${a}^{\frac{3}{4}}$,${a}^{-\frac{3}{5}}$,${a}^{-\frac{2}{3}}$.

查看答案和解析>>

同步练习册答案