精英家教网 > 高中数学 > 题目详情

【题目】埃及金字塔是古埃及的帝王(法老)陵墓,世界七大奇迹之一,其中较为著名的是胡夫金字塔.令人吃惊的并不仅仅是胡夫金字塔的雄壮身姿,还有发生在胡夫金字塔上的数字“巧合”.如胡夫金字塔的底部周长如果除以其高度的两倍,得到的商为3.14159,这就是圆周率较为精确的近似值.金字塔底部形为正方形,整个塔形为正四棱锥,经古代能工巧匠建设完成后,底座边长大约230米.因年久风化,顶端剥落10米,则胡夫金字塔现高大约为( )

A.128.5米B.132.5米C.136.5米D.110.5米

【答案】C

【解析】

设出胡夫金字塔原高,根据题意列出等式,解出等式即可根据题意选出答案。

胡夫金字塔原高为 ,则 ,即米,

则胡夫金字塔现高大约为136.4米.故选C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知直线l的参数方程为:为参数点的极坐标为,曲线C的极坐标方程为

试将曲线C的极坐标方程化为直角坐标方程,并求曲线C的焦点在直角坐标系下的坐标;

设直线l与曲线C相交于两点AB,点MAB的中点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市旅游局为了进一步开发旅游资源,需要了解游客的情况,以便制定相应的策略,在某月中随机抽取甲、乙两个景点各10天的游客数,画出茎叶图如下:若景点甲中的数据的中位数是126,景点乙中的数据的平均数是124.

1)求的值;

2)若将图中景点甲中的数据作为该景点较长一段时期内的样本数据(视样本频率为概率).今从这段时期内任取4天,记其中游客数不低于125人的天数为,求概率

3)现从上图的共20天的数据中任取2天的数据(甲、乙两景点中各取1天),记其中游客数不低于115且不高于135人的天数为,求的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,AB//CD,且.

(1)证明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC ,求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,为矩形,是以为直角的等腰直角三角形,平面平面

(Ⅰ)证明:平面平面

(Ⅱ)为直线的中点,且,求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,点MN分别为线段的中点,

(1)证明:

(2)求平面与平面所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两点,线段的直径

1)求的方程;

2)若经过点的直线截得的弦长为8,求此直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,从参加环保知识竞赛的学生中抽出名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:

(1)这一组的频数、频率分别是多少?

(2)估计这次环保知识竞赛成绩的平均数、众数、中位数。(不要求写过程)

(3) 从成绩是80分以上(包括80分)的学生中选两人,求他们在同一分数段的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】表示值域为的函数组成的集合,表示具有如下性质的函数组成的集合:对于函数,存在一个正数,使得函数的值域包含于区间。例如,当时,。则下列命题中正确的是:( )

A.设函数的定义域为,则“”的充要条件是“

B.函数的充要条件是有最大值和最小值

C.若函数的定义域相同,且,则

D.若函数有最大值,则

查看答案和解析>>

同步练习册答案