精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
3
=1(a>
10
)的右焦点F在圆D:(x-2)2+y2=1上,直线l:x=my+3(m≠0)交椭圆于M,N两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设点N关于x轴的对称点为N1,且直线N1M与x轴交于点P,试问△PMN的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.
(Ⅰ)由题设知,圆D:(x-2)2+y2=1,令y=0,
解得圆D与x轴交与两点(3,0),(1,0).
所以,在椭圆中c=3或c=1,又b2=3,
所以,a2=12或a2=4(舍去,因为a>
10
).
于是,椭圆C的方程为
x2
12
+
y2
3
=1

(Ⅱ)设M(x1,y1),N(x2,y2),则N1(x2,-y2).
联立方程
x2
12
+
y2
3
=1
x=my+3
?
(m2+4)y2+6my-3=0,
所以y1+y2=-
6m
m2+4
y1y2=-
3
m2+4

因为直线N1M的方程为
y-y1
-y2-y1
=
x-x1
x2-x1
,令y=0,
x=
y1(x2-x1)
y2-y1
+x1=
y1x2-y2x1
y1+y2
=
2my1y2+3(y1+y2)
y2+y1
=
-6m
m2+4
-
18m
m2+4
-6m
m2+4
=
-24m
-6m
=4

所以得点P(4,0).
解法一:S△PMN=
1
2
|FP|•|y1-y2|=
1
2
(y1+y2)2-4y1y2

=
1
2
36m2
(m2+4)2
+
12
(m2+4)
=2
3
m2+1
(m2+4)2
=2
3•
1
(m2+1)+
9
m2+1
+6
≤2
3
1
12
=1


当且仅当m2+1=3即m=±
2
时等号成立.
故△PMN的面积存在最大值1.
(或:S△PMN=2
3
m2+1
(m2+4)2
=2
3
-
1
(m2+4)2
+
1
m2+4

t=
1
m2+4
∈(0 , 
1
4
]

S△PMN=2
3
-3t2+t
=2
3
-3(t-
1
6
)
2
+
1
12
≤1

当且仅当t=
1
6
∈(0 , 
1
4
]
时等号成立,此时m2=2.
故△PMN的面积存在最大值为1.
解法二:|MN|=
(x1-x2)2+(y1-y2)2
=
(m2+1)[(y1+y2)2-4y1y2]
=
(m2+1)[
36m2
(m2+4)2
+
12
m2+4
]
=4
3
m2+1
m2+4

点P到直线l的距离是
|4-3|
m2+1
=
1
m2+1

所以,S△PMN=
4
3
2
1
m2+1
m2+1
m2+4
=2
3
m2+1
(m2+4)2
=2
3
-3(
1
m2+4
)
2
+
1
m2+4

t=
1
m2+4
∈(0 , 
1
4
]

S△PMN=2
3
-3t2+t
=2
3
-3(t-
1
6
)
2
+
1
12
≤1

当且仅当t=
1
6
∈(0 , 
1
4
]
时等号成立,此时m2=2.
故△PMN的面积存在最大值为1.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,且经过点P(1,
3
2
)

(1)求椭圆C的方程;
(2)设F是椭圆C的左焦,判断以PF为直径的圆与以椭圆长轴为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的短轴长为2
3
,右焦点F与抛物线y2=4x的焦点重合,O为坐标原点.
(1)求椭圆C的方程;
(2)设A、B是椭圆C上的不同两点,点D(-4,0),且满足
DA
DB
,若λ∈[
3
8
1
2
],求直线AB的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过点A(1,
3
2
),且离心率e=
3
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点B(-1,0)能否作出直线l,使l与椭圆C交于M、N两点,且以MN为直径的圆经过坐标原点O.若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区二模)已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的长轴长是4,离心率为
1
2

(Ⅰ)求椭圆方程;
(Ⅱ)设过点P(0,-2)的直线l交椭圆于M,N两点,且M,N不与椭圆的顶点重合,若以MN为直径的圆过椭圆C的右顶点A,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的短轴长为2,离心率为
2
2
,设过右焦点的直线l与椭圆C交于不同的两点A,B,过A,B作直线x=2的垂线AP,BQ,垂足分别为P,Q.记λ=
AP+BQ
PQ
,若直线l的斜率k≥
3
,则λ的取值范围为
 

查看答案和解析>>

同步练习册答案