精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
2
2
,椭圆C上的点到左焦点F距离的最小值与最大值之积为1.
(1)求椭圆C的方程;
(2)直线l过椭圆C内一点M(m,0),与椭圆C交于P、Q两点.对给定的m值,若存在直线l及直线母x=-2上的点N,使得△PNQ的垂心恰为点F,求m的取值范围.
(1)由条件得
c
a
=
2
2
(a+c)(a-c)=1
,解得a=
2
,b=c=1
∴椭圆C的方程为
x2
2
+y2=1

(2)由条件知,F(-1,0),-
2
<m<
2

设P(x1,y1),Q(x2,y2),N(-2,y1),则由
λy=x-m
x2
2
+y2=1
得(λ2+2)y2+2λmy+m2-2=0,
-
2
<m<
2
知△>0恒成立,且y1+y2=-
2λm
λ2+2
y1y2=
m2-2
λ2+2

由PQ⊥NF得y1=λ,(1)
由NQ⊥PF得
y2-y1
x2+2
×
y1
x1+1
=-1
,(2)
由(1)(2)式化简得,(λ2+1)y1y2+λ(m+1)(y1+y2)+(m+1)(m+2)=0
化简得,mλ2=-(3m2+6m+2)(显然m≠0),
由λ2≥0,-
2
<m<
2
得,解得
3
-3
3
≤m<0

∴m的取值范围[
3
-3
3
,0
).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1,F2,离心率e=
5
5
,过F1的直线交椭圆于M、N两点,且△MNF2的周长为4
5

(Ⅰ)求椭圆E的方程;
(Ⅱ)设AB是过椭圆E中心的任意弦,P是线段AB的垂直平分线与椭圆E的一个交点,求△APB面积的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,已知双曲线C1:2x2-y2=1.
(1)过C1的左顶点引C1的一条渐近线的平行线,求该直线与另一条渐近线及x轴围成的三角形的面积;
(2)设斜率为1的直线l交C1于P、Q两点,若l与圆x2+y2=1相切,求证:OP⊥OQ;
(3)设椭圆C2:4x2+y2=1,若M、N分别是C1、C2上的动点,且OM⊥ON,求证:O到直线MN的距离是定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C:y2=x,直线l:y=k(x-1)+1,要使抛物线C上存在关于对称的两点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

直线l过x轴上的点M,l交椭圆
x2
8
+
y2
4
=1
于A,B两点,O是坐标原点.
(1)若M的坐标为(2,0),当OA⊥OB时,求直线l的方程;
(2)若M的坐标为(1,0),设直线l的斜率为k(k≠0),是否存直线l,使得l垂直平分椭圆的一条弦?如果存在,求k的取值范围;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦点为F1(-1,0),F2(1,0),且经过点P(1,
3
2
)

(Ⅰ)求椭圆C的方程;
(Ⅱ)设过F1的直线l与椭圆C交于A、B两点,问在椭圆C上是否存在一点M,使四边形AMBF2为平行四边形,若存在,求出直线l的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若直线y=kx+2与曲线y=
x2-1
,|x|>1
1-x2
,|x|≤1
恰有两个不同的交点,则k∈______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆的方程为x2+y2=4,过点M(2,4)作圆的两条切线,切点分别为A1、A2,直线A1A2恰好经过椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右顶点和上顶点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线x=-1与椭圆相交于A、B两点,P是椭圆上异于A、B的任意一点,直线AP、BP分别交定直线l:x=-4于两点Q、R,求证
OQ
OR
为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线l与椭圆
x2
36
+
y2
9
=1
交于A和B两点,点(4,2)是线段AB的中点,则直线l的方程是______.

查看答案和解析>>

同步练习册答案