精英家教网 > 高中数学 > 题目详情
如图,椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1,F2,离心率e=
5
5
,过F1的直线交椭圆于M、N两点,且△MNF2的周长为4
5

(Ⅰ)求椭圆E的方程;
(Ⅱ)设AB是过椭圆E中心的任意弦,P是线段AB的垂直平分线与椭圆E的一个交点,求△APB面积的最小值.
(Ⅰ)∵△MNF2周长为4
5

∴4a=4
5

∴a=
5

∵离心率e=
5
5

∴c=1,
b=
a2-c2
=2,
∴椭圆E的方程为
x2
5
+
y2
4
=1

(Ⅱ)直线AB的方程为y=kx,线段AB的垂直平分线为y=-
1
k
x,
y=-
1
k
x与椭圆方程联立,可得x=±
20k2
4k2+5

∴可得P(
20k2
4k2+5
,-
1
k
20k2
4k2+5
),
P到直线AB的距离为d=|
k2+1
k
20k2
4k2+5
|
y=kx与椭圆方程联立,可得x=±
20
4+5k2

∴|AB|=
1+k2
•2
20
4+5k2

∴S△ABP=
1
2
|AB|d|=
1
2
1+k2
•2
20
4+5k2
•|
k2+1
k
20k2
4k2+5
|
令t=k2+1(t≥1),则S△ABP=20•
t2
(5t-1)(4t+1)
=20•
1
-(
1
t
-
1
2
)2+
81
4

∵t≥1,
∴t=1,即k=0时,△APB面积的最小值为2
5
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知双曲线的方程为5x2-4y2=20两个焦点为F1,F2
(1)求此双曲线的焦点坐标和渐近线方程;
(2)若椭圆与此双曲线有共同的焦点,且有一公共点P满足|PF1|•|PF2|=6,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率e=
6
3
,过点A(0,-b)和B(a,0)的直线与原点的距离为
3
2

(1)求椭圆的方程.
(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点.问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆的两顶点为A(
2
,0)
,B(0,1),该椭圆的左右焦点分别是F1,F2
(1)在线段AB上是否存在点C,使得CF1⊥CF2?若存在,请求出点C的坐标;若不存在,请说明理由.
(2)设过F1的直线交椭圆于P,Q两点,求△PQF2面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

曲线y=x2上的点到直线2x+y+4=0的最短距离是(  )
A.
5
5
B.
2
5
5
C.
3
5
5
D.
5

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C:x2=2py过点P(1,
1
2
)
,直线l交C于A,B两点,过点P且平行于y轴的直线分别与直线l和x轴相交于点M,N.
(1)求p的值;
(2)是否存在定点Q,当直线l过点Q时,△PAM与△PBN的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某圆锥曲线有下列信息:
①曲线是轴对称图形,且两坐标轴都是对称轴;
②焦点在x轴上且焦点到坐标原点的距离为1;
③曲线与坐标轴的交点不是两个;
④曲线过点A(1,
3
2
).
(1)判断该圆锥曲线的类型并求曲线的方程;
(2)点F是改圆锥曲线的焦点,点F′是F关于坐标原点O的对称点,点P为曲线上的动点,探求以|PF|以及|PF|•|PF′|的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C:x2=2py(p>0)上一点A(m,4)到其焦点F的距离为
17
4

(1)求P与m的值;
(2)若直线l过焦点F交抛物线于P,Q两点,且|PQ|=5,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
2
2
,椭圆C上的点到左焦点F距离的最小值与最大值之积为1.
(1)求椭圆C的方程;
(2)直线l过椭圆C内一点M(m,0),与椭圆C交于P、Q两点.对给定的m值,若存在直线l及直线母x=-2上的点N,使得△PNQ的垂心恰为点F,求m的取值范围.

查看答案和解析>>

同步练习册答案