精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),F(
2
,0)为其右焦点,过F垂直于x轴的直线与椭圆相交所得的弦长为2.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l:y=kx+m(|k|≤
2
2
)与椭圆C相交于A、B两点,以线段OA,OB为邻边作平行四边形OAPB,其中顶点P在椭圆C上,O为坐标原点,求|OP|的取值范围.
考点:直线与圆锥曲线的综合问题
专题:综合题,圆锥曲线的定义、性质与方程
分析:(Ⅰ)先由已知F(
2
,0)为椭圆的右焦点,过F垂直于x轴的直线与椭圆相交所得的弦长为2,可得c=
2
b2
a
=1,结合a2=b2+c2,解之即得a,b,从而写出椭圆C的方程;
(Ⅱ)先对k 分类讨论:当k=0时,P(0,2m)在椭圆C上,解得m=±
3
2
,所以|OP|=
2
;当k≠0时,将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合根系数的关系利用弦长公式即可求得|OP|的取值范围,从而解决问题.
解答: 解:(Ⅰ)∵F(
2
,0)为椭圆的右焦点,过F垂直于x轴的直线与椭圆相交所得的弦长为2.
∴c=
2
b2
a
=1,
∵a2=b2+c2
∴a2=4,b2=2.
故椭圆C的方程为
x2
4
+
y2
2
=1

(Ⅱ)当k=0时,P(0,2m)在椭圆C上,解得m=±
3
2

∴|OP|=
2

当k≠0时,直线方程代入椭圆方程,消y化简整理得:(1+2k2)x2+4kmx+2m2-4=0,
△=16k2m2-4(1+2k2)(2m2-4)=8(4k2-m2-2>0①
设A,B,P点的坐标分别为(x1,y1)、(x2,y2)、(x0,y0),
则x0=x1+x2=-
4km
1+2k2
,y0=y1+y2=k(x1+x2)+2m=
2m
1+2k2

由于点P在椭圆C上,∴
x02
4
+
y02
2
=1

从而
4k2m2
(1+2k2)2
+
2m2
(1+2k2)2
=1
,化简得2m2=1+2k2,经检验满足①式,
又|OP|=
x02+y02
=
4-
2
1+2k2

∵0<|k|≤
2
2

∴1<1+2k2≤2,
∴1≤
2
1+2k2
<2,
2
<|OP|≤
3

综上,所求|OP|的取值范围是[
2
3
].
点评:本题主要考查了直线与圆锥曲线的综合问题、椭圆的标准方程问题.当研究椭圆和直线的关系的问题时,常可利用联立方程,进而利用韦达定理来解决.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合U={1,2,3,4,5},A={2,3,5},则∁UA=(  )
A、{5}
B、{1,4}
C、{2,3}
D、{2,3,5}

查看答案和解析>>

科目:高中数学 来源: 题型:

若点A(1,2)是抛物线C:y2=2px(p>0)上一点,经过点B(5,-2)的直线l与抛物线C交于P,Q两点.
(Ⅰ)求证:
PA
QA
为定值;
(Ⅱ)若△APQ的面积为16
2
,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),过焦点垂直于长轴的弦长为
2
,焦点与短轴两端点构成等腰直角三角形.
(Ⅰ)求椭圆C的标准方程.
(Ⅱ)过点P(-2,0)作直线l与椭圆C交于A、B两点,求△AF1B的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

唐徕回中随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图,其中,上学所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100],
(1)求直方图中的x的值;
(2)如果上学所需时间不少于1小时的学生可申请住校,请估计学校600名新生中有多少名学生可以申请住校;
(3)学校规定上学时间在[0,20)的学生只能步行,上学时间在[20,40)的学生只能骑自行车,现在用分层抽样方法从[0,20)和[20,40)中抽取6名学生,再从这6名学生中任意抽取两人,问这两人都骑自行车的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

讨论直线l1:ax+8y-a-4=0与直线l2:x+2ay-2a+1=0的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
lnx
x
,x>6
e-x(x3+3x2+ax+b),x≤6
,其中a,b∈R,e为自然对数的底数.
(Ⅰ)当a=b=-3时,函数f(x)的单调区间;
(Ⅱ)当x≤6时,若函数h(x)=f(x)-e-x(x3+b-1)存在两个相距大于2的极值点,求实数a的取值范围;
(Ⅲ)若函数g(x)与函数f(x)的图象关于y轴对称,且函数g(x)在点(-6,m),(2,n)单调递减,在(m,2),(n,+∞)单调递增,试证明:f(n-m)
5
6
36

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sin
x
2
cos
x
2
+cos2
x
2
+m的图象过点(
6
,0).
(Ⅰ)求实数m值以及函数f(x)的单调递增区间;
(Ⅱ)设y=f(x)的图象与x轴、y轴及直线x=t(0<t<
3
)所围成的曲边四边形面积为S,求S关于t的函数S(t)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x-1|.
(Ⅰ)解不等式f(x-1)+f(x+3)≥6;
(Ⅱ)若|a|<1,|b|<1,且a≠0,求证:f(ab)>|a|f(
b
a
).

查看答案和解析>>

同步练习册答案