精英家教网 > 高中数学 > 题目详情
已知a>0,a≠1,设P:函数y=loga(x+1)在x∈(0,+∞)内单调递减;Q:曲线y=x2+(2a-3)x+1与x轴交于不同的两点,如果PQ有且只有一个正确,求a的取值范围.

解:当0<a<1时,函数y=loga(x+1)在(0,+∞)内单调递减.当a>1时,y=loga(x+1)在(0,+∞)内不是单调递减;曲线y=x2+(2a-3)x+1与x轴交于两点等价于(2a-3)2-4>0,即.??

(1)若P正确,且Q不正确,即函数y=loga(x+1)在(0,+∞)内单调递减,曲线y=x2+?(2a-3)x+1与x轴不交于两点,因此a∈(0,1)∩([,1)∪(1, ]),即a∈[,1).

(2)若P不正确,且Q正确,即函数y=loga(x+1)在(0,+∞)内不是单调递减,曲线y=x2+(2a-3)x+1与x轴交于两点,因此a∈(1,+∞)∩((0,)∪(,+∞)),即a∈(,+∞).?

综上,a的取值范围为[,1)∪(,+∞).

点评:本题考查对数函数与二次函数的单调性及简易逻辑等,还考查了分类讨论的思想方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设A,B是非空集合,定义A×B={x|x∈A∪B,且x∉A∩B},已知A={x|0≤x≤2},B={x|x≥0},则A×B等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下列不等式
①已知a>0,b>0,则(a+b)(
1
a
+
1
b
)≥4

②a2+b2+3>2a+2b;
③已知m>0,则
b
a
b+m
a+m

a-1
+
a+1
<2
a
(a>1)

其中恒成立的是
①②④
①②④
.(把所有成立不等式的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a≠b(a、b∈R)是关于x的方程x2-(k-1)x+k2=0两个根,则以下结论正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•松江区二模)已知双曲线C的中心在原点,D(1,0)是它的一个顶点,
d
=(1,
2
)
是它的一条渐近线的一个方向向量.
(1)求双曲线C的方程;
(2)若过点(-3,0)任意作一条直线与双曲线C交于A,B两点 (A,B都不同于点D),求证:
DA
DB
为定值;
(3)对于双曲线Γ:
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
,E为它的右顶点,M,N为双曲线Γ上的两点(都不同于点E),且EM⊥EN,那么直线MN是否过定点?若是,请求出此定点的坐标;若不是,说明理由.然后在以下三个情形中选择一个,写出类似结论(不要求书写求解或证明过程).
情形一:双曲线
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
及它的左顶点;
情形二:抛物线y2=2px(p>0)及它的顶点;
情形三:椭圆
x2
a2
+
y2
b2
=1(a>b>0)
及它的顶点.

查看答案和解析>>

科目:高中数学 来源:松江区二模 题型:解答题

已知双曲线C的中心在原点,D(1,0)是它的一个顶点,
d
=(1,
2
)
是它的一条渐近线的一个方向向量.
(1)求双曲线C的方程;
(2)若过点(-3,0)任意作一条直线与双曲线C交于A,B两点 (A,B都不同于点D),求证:
DA
DB
为定值;
(3)对于双曲线Γ:
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
,E为它的右顶点,M,N为双曲线Γ上的两点(都不同于点E),且EM⊥EN,那么直线MN是否过定点?若是,请求出此定点的坐标;若不是,说明理由.然后在以下三个情形中选择一个,写出类似结论(不要求书写求解或证明过程).
情形一:双曲线
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
及它的左顶点;
情形二:抛物线y2=2px(p>0)及它的顶点;
情形三:椭圆
x2
a2
+
y2
b2
=1(a>b>0)
及它的顶点.

查看答案和解析>>

同步练习册答案