精英家教网 > 高中数学 > 题目详情
7.若抛物线y2=2px(p>0)的准线经过点(-1,1),则抛物线焦点坐标为(1,0).

分析 利用抛物线y2=2px(p>0)的准线经过点(-1,1),求得$\frac{p}{2}$=1,即可求出抛物线焦点坐标.

解答 解:∵抛物线y2=2px(p>0)的准线经过点(-1,1),
∴$\frac{p}{2}$=1,
∴该抛物线焦点坐标为(1,0).
故答案为:(1,0).

点评 本题考查抛物线焦点坐标,考查抛物线的性质,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.如图是求S=1+2+3+5+…+99的程序流程图,其中①应为(  )
A.A≤97?B.A<99?C.A≤99?D.A≤101?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知f(x)=sinx,先把f(x)的横纵坐标各伸长2倍后,再向右平移$\frac{π}{3}$个单位,得到y=g(x).
(Ⅰ)求函数g(x)的解析式;
(Ⅱ)求函数g(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知a>0,b>0.
(1)求证:$\frac{a}{\sqrt{b}}$+$\frac{b}{\sqrt{a}}$≥$\sqrt{a}$+$\sqrt{b}$;
(2)若a+b=1,求证:$\frac{1}{a}$+$\frac{1}{b}$+$\frac{1}{ab}$≥8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x2+alnx.
(1)当a=-2e时,求函数f(x)的极值;
(2)若函数g(x)=f(x)+$\frac{2}{x}$在[1,2]上是单调增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设等差数列{an}的公差d>0,前n项和为Sn,且满足a2•a3=45,a1+a4=14
(1)试寻找一个等差数列{bn}和一个非负常数p,使得等式(n+p)•bn=Sn对于任意的正整数n恒成立,并说明你的理由;
(2)对于(1)中的等差数列{bn}和非负常数p,试求f(n)=$\frac{{b}_{n}}{(n+p)•{b}_{n+1}}$(n∈N*)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图是某校十大歌手比赛上,七位评委为某同学打出的分数的茎叶图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为(  )
A.85,4.84B.85,1.6C.86,1.6D.86,4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知Sn是等差数列{an}的前n项和,a4=7,S8=64、
(I)求数列{an}的通项公式
(II)设bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前100项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,AB,CD是圆O的两条互相垂直的直径,E是圆O上的点,过E点作圆O的切线交AB的延长线于F,连结CE交AB于G点.
(1)求证:FG2=FA•FB;
(2)若圆O的半径为2$\sqrt{3}$,OB=$\sqrt{3}$OG,求EG的长.

查看答案和解析>>

同步练习册答案