【题目】2018年国际山地旅游大会于10月14日在贵州召开,据统计有来自全世界的4000名女性和6000名男性徒步爱好者参与徒步运动,其中抵达终点的女性与男性徒步爱好者分别为1000名和2000名,抵达终点的徒步爱好者可获得纪念品一份。若记者随机电话采访参与本次徒步运动的1名女性和1名男性徒步爱好者,其中恰好有1名徒步爱好者获得纪念品的概率是( )
A. B. C. D.
科目:高中数学 来源: 题型:
【题目】已知向量,是平面内的一组基向量,为内的定点,对于内任意一点,当时,则称有序实数对为点的广义坐标,若点、的广义坐标分别为、,对于下列命题:
① 线段、的中点的广义坐标为;
② A、两点间的距离为;
③ 向量平行于向量的充要条件是;
④ 向量垂直于向量的充要条件是.
其中的真命题是________(请写出所有真命题的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校数学课外兴趣小组为研究数学成绩是否与性别有关,先统计本校高三年级每个学生一学期数学成绩平均分(采用百分制),剔除平均分在40分以下的学生后,共有男生300名,女生200名.现采用分层抽样的方法,从中抽取了100名学生,按性别分为两组,并将两组学生成绩分为6组,得到如下所示频数分布表.
分数段 | [40,50) | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
男 | 3 | 9 | 18 | 15 | 6 | 9 |
女 | 6 | 4 | 5 | 10 | 13 | 2 |
(1)估计男、女生各自的平均分(同一组数据用该组区间中点值作代表),从计算结果看,数学成绩与性别是否有关;
(2)规定80分以上为优分(含80分),请你根据已知条件作出2×2列联表,并判断是否有90%以上的把握认为“数学成绩与性别有关”.
优分 | 非优分 | 合计 | |
男生 | |||
女生 | |||
附表及公式:
0.100 | 0.050 | 0.010 | 0.001 | |
k | 2.706 | 3.841 | 6.635 | 10.828 |
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若、、均为正整数,且,为一素数,、、的进制表示分别为,其中,.证明:
(1)若,且对整数 均有,则,其中,表示不超过实数的最大整数.
(2) ,其中,表示集合A中元素的个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为了诊断高三学生在市“一模”考试中文科数学备考的状况,随机抽取了50名学生的市“一模”数学成绩进行分析,将这些成绩分为九组,第一组[60,70),第二组[70,80),……,第九组[140,150],并绘制了如图所示的频率分布直方图.
(1)试求出的值并估计该校文科数学成绩的众数和中位数;
(2)现从成绩在[120,150]的同学中随机抽取2人进行谈话,那么抽取的2人中恰好有一人的成绩在[130,140)中的概率是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两名射击运动员一次射击命中目标的概率分别是0.7,0.6,且每次射击命中与否相互之间没有影响,求:
(1)甲射击三次,第三次才命中目标的概率;
(2)甲、乙两人在第一次射击中至少有一人命中目标的概率;
(3)甲、乙各射击两次,甲比乙命中目标的次数恰好多一次的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A. 命题,都是假命题,则命题“”为真命题.
B. ,函数都不是奇函数.
C. 函数的图像关于对称 .
D. 将函数的图像上所有点的横坐标伸长到原来的2倍后得到
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com