精英家教网 > 高中数学 > 题目详情
9.在△ABC中,D是BC的中点,向量$\overrightarrow{AB}$=a,向量$\overrightarrow{AC}$=b,则向量$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{a}$+$\overrightarrow{b}$).(用向量a,b表示)

分析 直接利用向量的加法的平行四边形法则,求出结果即可

解答 解:因为D是△ABC的边BC上的中点,向量$\overrightarrow{AB}$=$\overrightarrow{a}$,向量$\overrightarrow{AC}$=$\overrightarrow{b}$,
所以$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$)=$\frac{1}{2}$($\overrightarrow{a}$+$\overrightarrow{b}$),
故答案为:$\frac{1}{2}$($\overrightarrow{a}$+$\overrightarrow{b}$)

点评 本题考查向量的四边形法则的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.若a<b<0,则下列不等式成立的是(  )
A.$\frac{1}{a}<\frac{1}{b}$B.$0<\frac{a}{b}<1$C.ab>b2D.$\frac{b}{a}>\frac{a}{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.幂函数f(x)=(t3-t+1)x3t+1是偶函数,且在(0,1)上单调递增,则f(2)=16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.三棱锥P-ABC的四个顶点都在球O的球面上,已知PA、PB、PC两两垂直,PA=1,PB+PC=4,当三棱锥的体积最大时,球心O到平面ABC的距离是(  )
A.$\frac{\sqrt{6}}{12}$B.$\frac{\sqrt{6}}{6}$C.$\frac{\sqrt{6}}{3}$D.$\frac{3}{2}$-$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知0<x<$\frac{π}{2}$,且sin(2x-$\frac{π}{4}$)=-$\frac{\sqrt{2}}{10}$,则sinx+cosx=$\frac{2\sqrt{10}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若函数f(x)=2sinωx(ω>0)在区间$[{-\frac{π}{6}\;,\;\;\frac{π}{4}}]$上单调递增,则ω的最大值为2.且当ω取最大值时f(x)的值域为[-2,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设$f(x)=\left\{\begin{array}{l}{log_2}x\;,\;\;x>0\\{2^3}\;,\;\;x≤0\end{array}\right.$,则$f({f({\frac{1}{2}})})$的值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,ABCD是菱形,PA⊥平面ABCD,PA=AD=2,∠BAD=60°.
(Ⅰ)求证:平面PBD⊥平面PAC;
(Ⅱ)求点A到平面PBD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知向量$\overrightarrow{m}$=(t+1,1),$\overrightarrow{n}$=(t+2,2),若$(\overrightarrow{m}+\overrightarrow{n})⊥(\overrightarrow{m}-\overrightarrow{n})$,则t=(  )
A.0B.-3C.3D.-1

查看答案和解析>>

同步练习册答案