精英家教网 > 高中数学 > 题目详情
20.根据如图所示的三视图,画出几何体.

分析 根据几何体的三视图,得出该几何体是正四棱柱与正四棱台的组合体,画出它的直观图即可.

解答 解:根据几何体的三视图,得;
该几何体是上部为正四棱柱,下部为正四棱台的组合体,
画出该几何体的直观图,如图所示.

点评 本题考查了空间几何体三视图的应用问题,也考查了几何体直观图的画法与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.函数y=(a-2)x在R上为增函数,则a的取值范围是(  )
A.a>3B.a>0且a≠1C.a<3D.2<a<3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求极限$\underset{lim}{x→0}$(1+3tan2x)${\;}^{{x}^{\frac{1}{2}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=$\frac{1}{{\sqrt{1-x}}}$的定义域为M,g(x)=ln(1+x)的定义域为N,则M∩N=(-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.以(-2,0)为圆心,并与圆x2+y2=1相外切的圆的方程(x+2)2+y2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,某时刻点P与坐标原点O重合,将边长为2的等边三角形PAB沿x轴正方向滚动,设顶点P(x,y)的轨迹方程是y=f(x),对任意的t∈[1,2],函数g(x)=x3+x2[-$\frac{f(4)}{x}$+f(4)+$\frac{m}{2}$]在区间(t,3)上不是单调函数,则m的取值范围为(  )
A.(-$\frac{37}{3}$,-9)B.(-∞,-$\frac{37}{3}$)C.(-$\frac{37}{3}$,-5)D.(-9,-5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设集合A={$\frac{n}{2}$|n∈Z},B={n|n∈Z},C={n+$\frac{1}{2}$|n∈Z},D={$\frac{n}{3}$+$\frac{1}{6}$|n∈Z},则在下列关系式中,成立的是(  )
A.A$\underset{?}{≠}$B$\underset{?}{≠}$C$\underset{?}{≠}$DB.A∩B=∅,C∩D=∅C.A=B∪C,C$\underset{?}{≠}$DD.A∪B=B
,C∩D=∅

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若函数f(x)在R上可导,f(x)=x3+x2f′(1),则$\int_{-1}^1$ f(x)dx=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.①若$\overrightarrow{AB}∥\overrightarrow{CD}$,则A,B,C,D四点共线;
②若$\overrightarrow{AB}∥\overrightarrow{AC}$,则A,B,C三点共线;
③若$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$为不共线的非零向量,$\overrightarrow{a}$=4$\overrightarrow{{e}_{1}}$-$\frac{2}{5}$$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=-$\overrightarrow{{e}_{1}}$+$\frac{1}{10}$$\overrightarrow{{e}_{2}}$,则$\overrightarrow{a}$∥$\overrightarrow{b}$;
④若向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{3}}$是三个不共面的向量,且满足等式k1$\overrightarrow{{e}_{1}}$+k2$\overrightarrow{{e}_{2}}$+k3$\overrightarrow{{e}_{3}}$=$\overrightarrow{0}$,则k1=k2=k3=0.
其中是真命题的序号是②③④.

查看答案和解析>>

同步练习册答案