精英家教网 > 高中数学 > 题目详情
已知函数f(x)=4x+m•2x+1有且只有一个零点,则实数m的值为
-2
-2
分析:通过设2x=t(t>0),则t2+mt+1=0,函数只有一个零点转化为方程有且只有一个正实数根,考虑应用判别式,分判别式大于0和等于0两种情况.
解答:解:∵f(x)=4x+m•2x+1有且仅有一个零点,
即方程(2x2+m•2x+1=0仅有一个正实根.
设2x=t(t>0),则t2+mt+1=0.
当△=0,即m2-4=0,
∴m=-2时,t=1,满足题意,当m=2时,t=-1不合题意,舍去,
故答案为:-2.
点评:本题考查函数的零点与对应的方程的跟的关系,函数的零点就是对应方程的根.注意换元法的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=-
4+
1
x2
,数列{an},点Pn(an,-
1
an+1
)在曲线y=f(x)上(n∈N+),且a1=1,an>0.
( I)求数列{an}的通项公式;
( II)数列{bn}的前n项和为Tn且满足bn=an2an+12,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-
4-x2
在区间M上的反函数是其本身,则M可以是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=4+ax-1(a>0且a≠1)的图象恒过定点P,则P点的坐标是
(1,5)
(1,5)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
4-x
的定义域为A,B={x|2x+3≥1}.
(1)求A∩B;
(2)设全集U=R,求?U(A∩B);
(3)若Q={x|2m-1≤x≤m+1},P=A∩B,Q⊆P,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
(4-
a
2
)x+4,  x≤6
ax-5,     x>6
(a>0,a≠1),数列{an}满足an=f(n)(n∈N*),且{an}是单调递增数列,则实数a的取值范围(  )

查看答案和解析>>

同步练习册答案