【题目】已知椭圆
的一个焦点与抛物线
的焦点重合,且此抛物线的准线被椭圆C截得的弦长为1.
(I)求椭圆C的标准方程;
(II)直线l交椭圆C于A,B两点,线段AB的中点为
,直线m是线段AB的垂直平分线,试问直线
过定点坐标.
【答案】(Ⅰ)
;(Ⅱ)
.
【解析】
(I)根据抛物线的焦点坐标求得椭圆
,结合
以及
,求得
的值,进而求得椭圆的标准方程.
(II)首先根据
在椭圆
的内部,求得
的取值范围.分成
的斜率存在或者不存在两种情况进行分类讨论,求出直线
的方程,由此判断直线
过定点
.
(I)抛物线
的焦点为
,则
.抛物线的准线
被椭圆C截得的弦长为
,所以
,结合
,解得
,
.
故椭圆C的标准方程为
.
(II)显然点
在椭圆C内部,故
,且直线的斜率不为0
当直线l的斜率存在且不为0时,易知
,设直线l的方程为![]()
代入椭圆方程并化简得:![]()
设
,
,则
,解得
.
因为直线m是线段AB的垂直平分线,故直线
,即:
.
令
,此时
,
,于是直线m过定点
.
当直线l的斜率不存在时,易知
,此时直线
,故直线m过定点![]()
综上所述,直线m过定点
.
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左,右焦点分别为
,
,点
在椭圆
上.
(1)求椭圆
的标准方程;
(2)是否存在斜率为
的直线
与椭圆
相交于
,
两点,使得
?若存在,求出直线的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正方体有8个不同顶点,现任意选择其中4个不同顶点,然后将它们两两相连,可组成平面图形成空间几何体.在组成的空间几何体中,可以是下列空间几何体中的________.(写出所有正确结论的编号)
①每个面都是直角三角形的四面体;
②每个面都是等边三角形的四面体;
③每个面都是全等的直角三角形的四面体;
④有三个面为等腰直角三角形,有一个面为等边三角形的四面体.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知等腰梯形
中,
是
的中点,![]()
,将
沿着
翻折成
,使平面
平面
.
![]()
![]()
(Ⅰ)求证:
;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)在线段
上是否存在点P,使得
平面
,若存在,求出
的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
(
,
为参数),以坐标原点
为极点,
轴正半轴为极轴建立极坐标系,直线
的极坐标方程为
,若直线
与曲线
相切;
(1)求曲线
的极坐标方程;
(2)在曲线
上取两点
,
与原点
构成
,且满足
,求面积
的最大值.
【答案】(1)
;(2)![]()
【解析】试题分析:(1)利用极坐标与直角坐标的互化公式可得直线
的直角坐标方程为
,
,消去参数
可知曲线
是圆心为
,半径为
的圆,由直线
与曲线
相切,可得:
;则曲线C的方程为
, 再次利用极坐标与直角坐标的互化公式可得
可得曲线C的极坐标方程.
(2)由(1)不妨设M(
),
,(
),
,
,
由此可求
面积的最大值.
试题解析:(1)由题意可知直线
的直角坐标方程为
,
曲线
是圆心为
,半径为
的圆,直线
与曲线
相切,可得:
;可知曲线C的方程为
,
所以曲线C的极坐标方程为
,
即
.
(2)由(1)不妨设M(
),
,(
),
,
![]()
,
当
时,
,
所以△MON面积的最大值为
.
【题型】解答题
【结束】
23
【题目】已知函数
的定义域为
;
(1)求实数
的取值范围;
(2)设实数
为
的最大值,若实数
,
,
满足
,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】国际羽毛球比赛规则从2006年5月开始,正式决定实行21分的比赛规则和每球得分制,并且每次得分者发球,所有单项的每局获胜分至少是21分,最高不超过30分,即先到21分的获胜一方赢得该局比赛,如果双方比分为
时,获胜的一方需超过对方2分才算取胜,直至双方比分打成
时,那么先到第30分的一方获胜.在一局比赛中,甲发球赢球的概率为
,甲接发球贏球的概率为
,则在比分为
,且甲发球的情况下,甲以
赢下比赛的概率为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某椭圆C,它的中心在坐标原点,左焦点为F(﹣
,0),且过点D(2,0).
(1)求椭圆C的标准方程;
(2)若已知点A(1,
),当点P在椭圆C上变动时,求出线段PA中点M的轨迹方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com