【题目】国际羽毛球比赛规则从2006年5月开始,正式决定实行21分的比赛规则和每球得分制,并且每次得分者发球,所有单项的每局获胜分至少是21分,最高不超过30分,即先到21分的获胜一方赢得该局比赛,如果双方比分为
时,获胜的一方需超过对方2分才算取胜,直至双方比分打成
时,那么先到第30分的一方获胜.在一局比赛中,甲发球赢球的概率为
,甲接发球贏球的概率为
,则在比分为
,且甲发球的情况下,甲以
赢下比赛的概率为( )
A.
B.
C.
D.![]()
科目:高中数学 来源: 题型:
【题目】2019年10月,德国爆发出“芳香烃门”事件,即一家权威的检测机构在德国销售的奶粉中随机抽检了16款(德国4款,法国8款、荷兰4款),其中8款检测出芳香烃矿物油成分,此成分会严重危害婴幼儿的成长,有些奶粉已经远销至中国,
地区闻讯后,立即组织相关检测员对这8款品牌的奶粉进行抽检,已知该地区一婴幼儿用品商店在售某品牌的奶粉共6袋,这6袋奶粉中有4袋含有芳香矿物油成分,则随机抽取3袋恰有2袋含有芳香经矿物油成分的概率为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的一个焦点与抛物线
的焦点重合,且此抛物线的准线被椭圆C截得的弦长为1.
(I)求椭圆C的标准方程;
(II)直线l交椭圆C于A,B两点,线段AB的中点为
,直线m是线段AB的垂直平分线,试问直线
过定点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左焦点
,直线
与y轴交于点P.且与椭圆交于A,B两点.A为椭圆的右顶点,B在x轴上的射影恰为
。
(1)求椭圆E的方程;
(2)M为椭圆E在第一象限部分上一点,直线MP与椭圆交于另一点N,若
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果函数
满足
且
是它的零点,则函数
是“有趣的”,例如
就是“有趣的”,已知
是“有趣的”.
(1)求出b、c并求出函数
的单调区间;
(2)若对于任意正数x,都有
恒成立,求参数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,平面内两条直线
和
相交于点
,构成的四个角中的锐角为
.对于平面上任意一点
,若
,
分别是
到直线
和
的距离,则称有序非负实数对
是点
的“距离坐标”,给出下列四个命题:
①
点有且仅有两个;
②
点有且仅有4个;
③若
,则点
的轨迹是两条过
点的直线;
④满足
的所有点
位于一个圆周上.
其中正确命题的个数是( )
![]()
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数
的最大值为3,其图象相邻两条对称轴之间的距离为
.
![]()
(Ⅰ)求函数
的解析式和当
时
的单调减区间;
(Ⅱ)
的图象向右平行移动
个长度单位,再向下平移1个长度单位,得到
的图象,用“五点法”作出
在
内的大致图象.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经统计,用于数学学习的时间(单位:小时)与成绩(单位:分)近似于线性相关关系.对某小组学生每周用于数学的学习时间
与数学成绩
进行数据收集如下:
![]()
由样本中样本数据求得回归直线方程为
,则点
与直线
的位置关系是( )
A.
B. ![]()
C.
D.
与
的大小无法确定
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在R上的函数
在[0,7]上有1和6两个零点,且函数
与函数
都是偶函数,则
在[0,2019]上的零点至少有( )个
A.404B.406C.808D.812
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com