【题目】已知函数
,若函数
恰有三个零点,则实数
的取值范围是____________.
【答案】![]()
【解析】
画出
和
的图像,根据
和
的图像有三个交点,求得
的取值范围.
注意到
在
上递减,且关于
对称.画出
和
的图像如下图所示,直线
过定点
.由于
,所以
是
的零点.
由图像可知,当
时,
与
只有一个公共点
.
当
时:
由
化简得
,由于
时,
,所以当
时,
,不在区间
内,所以此时
与
没有公共点.当
时,
,在区间
内,所以此时
与
有一个公共点.
当
,且
时,由图可知,要使
与
有
个公共点,
的取值范围应介于
和过
点的
切线(虚线)的斜率之间.设切点为
,
,所以
,解得
,切线的斜率为
.所以当
时,符合题意.
当
,且
时,由图可知,要使
与
有
个公共点,
的取值范围应不大于过
点
的切线的斜率.
,
.所以当
时符合题意.
综上所述,
的取值范围是
.
故答案为:
.
![]()
科目:高中数学 来源: 题型:
【题目】某省从2021年开始将全面推行新高考制度,新高考“
”中的“2”要求考生从政治、化学、生物、地理四门中选两科,按照等级赋分计入高考成绩,等级赋分规则如下:从2021年夏季高考开始,高考政治、化学、生物、地理四门等级考试科目的考生原始成绩从高到低划分为
五个等级,确定各等级人数所占比例分别为
,
,
,
,
,等级考试科目成绩计入考生总成绩时,将
至
等级内的考生原始成绩,依照等比例转换法分别转换到
、
、
、
、
五个分数区间,得到考生的等级分,等级转换分满分为100分.具体转换分数区间如下表:
等级 |
|
|
|
|
|
比例 |
|
|
|
|
|
赋分区间 |
|
|
|
|
|
而等比例转换法是通过公式计算:![]()
其中
,
分别表示原始分区间的最低分和最高分,
、
分别表示等级分区间的最低分和最高分,
表示原始分,
表示转换分,当原始分为
,
时,等级分分别为
、![]()
假设小南的化学考试成绩信息如下表:
考生科目 | 考试成绩 | 成绩等级 | 原始分区间 | 等级分区间 |
化学 | 75分 |
|
|
|
设小南转换后的等级成绩为
,根据公式得:
,
所以
(四舍五入取整),小南最终化学成绩为77分.
已知某年级学生有100人选了化学,以半期考试成绩为原始成绩转换本年级的化学等级成绩,其中化学成绩获得
等级的学生原始成绩统计如下表:
成绩 | 95 | 93 | 91 | 90 | 88 | 87 | 85 |
人数 | 1 | 2 | 3 | 2 | 3 | 2 | 2 |
(1)从化学成绩获得
等级的学生中任取2名,求恰好有1名同学的等级成绩不小于96分的概率;
(2)从化学成绩获得
等级的学生中任取5名,设5名学生中等级成绩不小于96分人数为
,求
的分布列和期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年10月,德国爆发出“芳香烃门”事件,即一家权威的检测机构在德国销售的奶粉中随机抽检了16款(德国4款,法国8款、荷兰4款),其中8款检测出芳香烃矿物油成分,此成分会严重危害婴幼儿的成长,有些奶粉已经远销至中国,
地区闻讯后,立即组织相关检测员对这8款品牌的奶粉进行抽检,已知该地区一婴幼儿用品商店在售某品牌的奶粉共6袋,这6袋奶粉中有4袋含有芳香矿物油成分,则随机抽取3袋恰有2袋含有芳香经矿物油成分的概率为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知从1开始的连续奇数蛇形排列形成宝塔形数表,第一行为1,第二行为3,5,第三行为7,9,11,第四行为13,15,17,19,如图所示,在宝塔形数表中位于第
行,第
列的数记为
,比如
,
,
,若
,则
( )
![]()
A.64B.65C.71D.72
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的长轴长为4,直线
被椭圆
截得的线段长为
.
(1)求椭圆
的标准方程;
(2)过椭圆
的右顶点作互相垂直的两条直线
分别交椭圆
于
两点(点
不同于椭圆
的右顶点),证明:直线
过定点
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,分别过椭圆
左、右焦点
的动直线
相交于
点,与椭圆
分别交于
与
不同四点,直线
的斜率
满足
, 已知
与
轴重合时,
.
![]()
(1)求椭圆
的方程;
(2)是否存在定点
使得
为定值,若存在,求出
点坐标并求出此定值,若不存在,
说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的一个焦点与抛物线
的焦点重合,且此抛物线的准线被椭圆C截得的弦长为1.
(I)求椭圆C的标准方程;
(II)直线l交椭圆C于A,B两点,线段AB的中点为
,直线m是线段AB的垂直平分线,试问直线
过定点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数
的最大值为3,其图象相邻两条对称轴之间的距离为
.
![]()
(Ⅰ)求函数
的解析式和当
时
的单调减区间;
(Ⅱ)
的图象向右平行移动
个长度单位,再向下平移1个长度单位,得到
的图象,用“五点法”作出
在
内的大致图象.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com