精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的长轴长为4,直线被椭圆截得的线段长为.

(1)求椭圆的标准方程;

(2)过椭圆的右顶点作互相垂直的两条直线分别交椭圆两点(点不同于椭圆的右顶点),证明:直线过定点.

【答案】(1);(2)

【解析】分析:(1)由椭圆的对称性知两点关于原点对称,不妨设在第一象限,由弦长可得,代入,再结合可解得

(2)只要设出直线方程:代入椭圆方程可解得M点坐标,同理可解得N点坐标,由两点求出直线MN的方程(注意分类讨论MN垂直和不垂直两种情形),通过直线方程可观察出直线所过定点.

详解:(1)根据题意,设直线与题意交于两点.不妨设点在第一象限,又长为

,∴,可得

,故题意的标准方程为

(2)显然直线的斜率存在且不为0,设

,∴

同理可得

时,,所以直线的方程为

整理得,所以直线

时,直线的方程为,直线也过点

所以直线过定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于函数,下列说法正确的是____________

①函数的定义域为

②函数为奇函数;

③函数的值域为

④函数在定义域上为增函数;

⑤对于,均有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两同学5次综合测评的成绩如茎叶图所示.

9

8

8

3

3

7

2

1

0

9

9

老师在计算甲、乙两人平均分时,发现乙同学成绩的一个数字无法看清.若从{0,1,2,…,9}随机取一个数字代替,则乙的平均成绩超过甲的平均成绩的概率为(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ax2+lnx.
(Ⅰ)当a=﹣1时,求函数y=f(x)的图象在点(1,f(1))处的切线方程;
(Ⅱ)已知a<0,若函数y=f(x)的图象总在直线y=-的下方,求a的取值范围;
(Ⅲ)记f′(x)为函数f(x)的导函数.若a=1,试问:在区间[1,10]上是否存在k(k<100)个正数x1 , x2 , x3…xk , 使得f′(x1)+f′(x2)+f′(x3)+…+f′(xk)≥2012成立?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图l,在正方形ABCD中,AB=2,E是AB边的中点,F是BC边上的一点,对角线AC分别交DE、DF于M、N两点.将ADAE,CDCF折起,使A、C重合于A点,构成如图2所示的几何体.
(I)求证:A′D⊥面A′EF;
(Ⅱ)试探究:在图1中,F在什么位置时,能使折起后的几何体中EF∥平面AMN,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,函数,函数.

(1)讨论的单调性;

(2)当时,不等式恒成立,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的内角A,B,C所对应的边分别为a,b,c.
(1)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);
(2)若a,b,c成等比数列,求cosB的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,且f(x)=

(1)求函数f(x)的解析式;最小正周期及单调递增区间.

(2)当时,f(x)的最小值是-4,求此时函数f(x)的最大值,并求出相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:

上年度出险次数

0

1

2

3

4

≥5

保费

0.85a

a

1.25a

1.5a

1.75a

2a

随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:

出险次数

0

1

2

3

4

≥5

频数

60

50

30

30

20

10

(1)记A为事件:“一续保人本年度的保费不高于基本保费”,求P(A)的估计值;

(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;

(3)求续保人本年度平均保费的估计值.

查看答案和解析>>

同步练习册答案