精英家教网 > 高中数学 > 题目详情
如图,四棱柱中,平面,底面是边长为1的正方形,侧棱
(Ⅰ)证明:
(Ⅱ)若棱上存在一点,使得
当二面角的大小为时,求实数的值.
所在直线分别为轴,轴,轴建系

---------------1分
(Ⅰ)
  ∴--------------4分
(Ⅱ)∵   ∴,设平面的一个法向量为

,∴-----------------------6分
设平面的一个法向量为
,
  ∴-----------------8分
-----10分  
 
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,平面ABCD⊥平面ADEF,其中ABCD为矩形,ADEF为梯形,AF∥DE,AF⊥FE,AF=AD=2DE=2.

(Ⅰ)求异面直线EF与BC所成角的大小;
(Ⅱ)若二面角A-BF-D的平面角的余弦值为,求AB的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,顶点在底面内的射影恰好落在的中点上,又

(1)求证:
(2)若,求直线所成角的余弦值;
(3)若平面与平面所成的角为,求的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面ABCD是正方形,侧棱底面ABCD,,E是PC的中点,作交PB于点F.
(1)证明 平面
(2)证明平面EFD;
(3)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面为平行四边形,底面,E在棱上,  (Ⅰ) 当时,求证: 平面;  (Ⅱ) 当二面角的大小为时,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面是正方形,⊥平面,,点ESD上的点,且.
(1)求证:对任意的,都有ACBE
(2)若二面角C-AE-D的大小为,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,,底面为矩形,分别是的中点,
(1)求证:
(2)求证:
(3)求四棱锥的表面积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在棱长为的正方体中,分别是的中点,求点到截面的距离              

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知,则的取值范围是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案