精英家教网 > 高中数学 > 题目详情
已知圆C:x2+y2+x-6y+3=0和直线l:x+2y+m=0交于P,Q两点,且OP⊥OQ
(O为坐标原点),求:
(Ⅰ)圆C的圆心坐标与半径;
(Ⅱ)m的值及直线l在y轴上的截距.
分析:(Ⅰ)直接把圆的方程转化为标准形式,即可求出圆C的圆心坐标与半径;
(Ⅱ)先P,Q的坐标,利用P,Q的坐标是方程组
x2+y2+x-6y+3=0
x+2y+m=0
的解,消去x求出P,Q的纵坐标之间的关系;再结合OP⊥OQ?x1x2+y1y2=0,即可求出m的值,进而求出直线l在y轴上的截距.
解答:解:(Ⅰ)C:(x+
1
2
)2+(y-3)2=(
5
2
)2

圆C的圆心坐标C(-
1
2
,3)
,半径r=
5
2

(Ⅱ)设P(x1,y1),Q(x2,y2
则P,Q的坐标(x1,y1),(x2,y2)是方程组
x2+y2+x-6y+3=0
x+2y+m=0
的解,
消去x,得(2y+m)2+y2+(-2y-m)-6y+3=0
即5y2+4(m-2)y+m2-m+3=0
△=16(m-2)2-20(m2-m+3)=-4(m2+11m-1)>0
y1+y2=-
4
5
(m-2)
y1y2=
1
5
(m2-m+3)

因为OP⊥OQ?x1x2+y1y2=0
又  x1x2+y1y2
=(2y1+m)(2y2+m)+y1y2=5y1y2+2m(y1+y2)+m2
=m2-m+3+2m[-
4
5
(m-2)]+m2=
1
5
(2m2+11m+15)=0

即(m+3)(2m+5)=0,
解得:m=-3,m=-
5
2

此时△>0
又因为直线l在y轴上的截距是-
1
2
m
,即
3
2
5
4
点评:本题主要考查直线与圆的方程的应用.在求圆的圆心坐标与半径时,常用做法是把圆的方程转化为标准形式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C:x2+y2-6x-4y+8=0.以圆C与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件双曲线的标准方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)一个圆与x轴相切,圆心在直线3x-y=0上,且被直线x-y=0所截得的弦长为2
7
,求此圆方程.
(2)已知圆C:x2+y2=9,直线l:x-2y=0,求与圆C相切,且与直线l垂直的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•普陀区一模)如图,已知圆C:x2+y2=r2与x轴负半轴的交点为A.由点A出发的射线l的斜率为k,且k为有理数.射线l与圆C相交于另一点B.
(1)当r=1时,试用k表示点B的坐标;
(2)当r=1时,试证明:点B一定是单位圆C上的有理点;(说明:坐标平面上,横、纵坐标都为有理数的点为有理点.我们知道,一个有理数可以表示为
qp
,其中p、q均为整数且p、q互质)
(3)定义:实半轴长a、虚半轴长b和半焦距c都是正整数的双曲线为“整勾股双曲线”.
当0<k<1时,是否能构造“整勾股双曲线”,它的实半轴长、虚半轴长和半焦距的长恰可由点B的横坐标、纵坐标和半径r的数值构成?若能,请尝试探索其构造方法;若不能,试简述你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泸州一模)已知圆C:x2+y2=r2(r>0)与抛物线y2=40x的准线相切,若直线l:
x
a
y
b
=1
与圆C有公共点,且公共点都为整点(整点是指横坐标.纵坐标都是整数的点),那么直线l共有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2=4与直线L:x+y+a=0相切,则a=(  )

查看答案和解析>>

同步练习册答案