精英家教网 > 高中数学 > 题目详情
已知x∈[
1
27
1
9
]
,函数f(x)=log3
x
27
×log33x

(1)求函数f(x)最大值和最小值;
(2)若方程f(x)+m=0有两根α,β,试求αβ的值
分析:(1)将函数变形f(x)=(log3x-3)(log3x+1)=(log3x)2-2log3x-3,令log3x=t,转化为二次函数解决.
(2)方程f(x)+m=0有两根α,β,令log3x=t,则t2-2t-3+m=0也有两根,再用韦达定理求解.
解答:解:(1)f(x)=(log3x-3)(log3x+1)=(log3x)2-2log3x-3
令log3x=t,由x∈[
1
27
1
9
]
得,t∈[-3,-2]
∴y=t2-2t-3,t∈[-3,-2]
当t=-3时,ymax=12
当t=-2时,ymin=5
(2)(log3x)2-2log3x-3+m=0,有两个根α、β
令log3x=t,则t2-2t-3+m=0也有两根,不妨设t1=log3α,t2=log3β
则t1+t2=log3α+log3β=log3(αβ)=2
∴αβ=9
点评:本题主要考查一般函数通过变形转化为基本函数解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

计算:
(1)已知 a3x=
1
27
,求 
a2x+a-2x
ax+a-x
的值.
(2)
log
81
2
3
-
log
16
2
3
+
log
20
2
3
-
log
30
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(ax)=-x2+2x+2(a>0且a≠1).
(1)求f(x)的解析式;
(2)若a=2,x∈[
1
4
,16]
,求f(x)的值域;
(3)若x∈[
1
27
,3]
,是否存在实数a的值,使得f(x)的值域为[-1,3],若存在,求出a的取值的集合;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知x∈[
1
27
1
9
]
,函数f(x)=log3
x
27
×log33x

(1)求函数f(x)最大值和最小值;
(2)若方程f(x)+m=0有两根α,β,试求αβ的值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

计算:
(1)已知 a3x=
1
27
,求 
a2x+a-2x
ax+a-x
的值.
(2)
log81
2
3
-
log16
2
3
+
log20
2
3
-
log30
2
3

查看答案和解析>>

同步练习册答案