【题目】已知数列满足, ,其中.
(1)设,求证:数列是等差数列,并求出的通项公式;
(2)设,数列的前项和为,是否存在正整数,使得对于恒成立,若存在,求出的最小值,若不存在,请说明理由.
【答案】(1) ;(2) 的最小值为3.
【解析】试题分析:(1)利用递推公式即可得出为一个常数,从而证明数列是等差数,再利用等差数列的通项公式即可得到,进而得到;(2)利用(1)的结论,利用“裂项求和”即可得到,要使得对于恒成立,只要,即,解出即可.
试题解析:(1)证明: ,
所以数列是等差数列,
,因此,
由.
(2)由,
所以,
所以,
因为,所以恒成立,
依题意要使对于,恒成立,只需,且 解得, 的最小值为.
【方法点晴】裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,掌握一些常见的裂项技巧:①;②
;③;
④ ;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.
科目:高中数学 来源: 题型:
【题目】已知向量 =(1, ), =(sinx,cosx),设函数f(x)=
(1)求函数f(x)的最小正周期和最大值;
(2)设锐角△ABC的三个内角A,B,C的对边分别为a,b,c,若c= ,cosB= ,且f(C)= ,求b.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了了解2013年某校高三学生的视力情况,随机抽查了一部分学生视力,将调查结果分组,分组区间为,,… ,经过数据处理,得到如右频率分布表:
(1)求频率分布表中未知量的值;
(2)从样本中视力在和的所有同学中随机抽取两人,求两人的视力差的绝对值低于0.5的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点为,抛物线上横坐标为的点到抛物线顶点的距离与该点到抛物线准线的距离相等。
(1)求抛物线的方程;
(2)设直线与抛物线交于两点,若,求实数的值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某成衣批发店为了对一款成衣进行合理定价,将该款成衣按事先拟定的价格进行试销,得到了如下数据:
批发单价x(元) | 80 | 82 | 84 | 86 | 88 | 90 |
销售量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)求回归直线方程 ,其中
(2)预测批发单价定为85元时,销售量大概是多少件?
(3)假设在今后的销售中,销售量与批发单价仍然服从(1)中的关系,且该款成衣的成本价为40元/件,为使该成衣批发店在该款成衣上获得更大利润,该款成衣单价大约定为多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下表提供了某厂节能降耗技术改造后生产产品过程中记录的产量x(吨)与相应的生产能耗y(吨)标准煤的几组对照数据:
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
(1)求y关于x的线性回归方程;(已知 )
(2)已知该厂技术改造前100吨甲产品能耗为90吨标准煤,试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低了多少吨标准煤.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某书店销售刚刚上市的某知名品牌的高三数学单元卷,按事先拟定的价格进行5天试销,每种单价试销1天,得到如表数据:
单价x(元) | 18 | 19 | 20 | 21 | 22 |
销量y(册) | 61 | 56 | 50 | 48 | 45 |
(1)求试销5天的销量的方差和y对x的回归直线方程;
(2)预计今后的销售中,销量与单价服从(1)中的回归方程,已知每册单元卷的成本是14元,
为了获得最大利润,该单元卷的单价应定为多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com