精英家教网 > 高中数学 > 题目详情

【题目】已知向量 =(1, ), =(sinx,cosx),设函数f(x)=
(1)求函数f(x)的最小正周期和最大值;
(2)设锐角△ABC的三个内角A,B,C的对边分别为a,b,c,若c= ,cosB= ,且f(C)= ,求b.

【答案】
(1)解:f(x)=sinx+ cosx=2sin(x+ ),

∴f(x)的最小正周期T=2π,f(x)的最大值为2


(2)解:∵f(C)=2sin(C+ )= ,∴sin(C+ )=

∵0 ,∴C=

∵cosB= ,∴sinB=

由正弦定理得 ,∴

解得:b=


【解析】(1)根据向量的数量积公式得出f(x)解析式,使用和角公式化简,结合正弦函数的性质得出答案;(2)根据f(C)= 得出C,根据同角三角函数的关系计算sinB,由正弦定理得出b.
【考点精析】解答此题的关键在于理解正弦定理的定义的相关知识,掌握正弦定理:,以及对余弦定理的定义的理解,了解余弦定理:;;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆Cx2y2+2x-4y+3=0.

(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程.

(2)从圆C外一点P(x1y1)向该圆引一条切线,切点为MO为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= sin cos +sin2 (ω>0,0<φ< ).其图象的两个相邻对称中心的距离为 ,且过点( ,1).
(1)函数f(x)的解析式;
(2)在△ABC中,角A,B,C所对的边分别为a,b,c.已知 = .且f(A)= ,求角C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校为了解学生在课外读物方面的支出情况,抽取了n名同学进行调查,结果显示这些同学的支出都在[10,50)(单位:元),其中支出在[30,50)(单位:元)的同学有67人,其频率分布直方图如图所示,则n的值为(  )

A. 100 B. 120 C. 130 D. 390

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校为了解学生在课外读物方面的支出情况,抽取了n名同学进行调查,结果显示这些同学的支出都在[10,50)(单位:元),其中支出在[30,50)(单位:元)的同学有67人,其频率分布直方图如图所示,则n的值为(  )

A. 100 B. 120 C. 130 D. 390

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】农科院的专家为了了解新培育的甲、乙两种麦苗的长势情况,从甲、乙两种麦苗的试验田中各抽取6株麦苗测量麦苗的株高,数据如下:(单位:cm)

甲:9,10,11,12,10,20

乙:8,14,13,10,12,21.

(1)在给出的方框内绘出所抽取的甲、乙两种麦苗株高的茎叶图;

(2)分别计算所抽取的甲、乙两种麦苗株高的平均数与方差,并由此判断甲、乙两种麦苗的长势情况.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足 ,其中.

(1)设,求证:数列是等差数列,并求出的通项公式;

(2)设,数列的前项和为,是否存在正整数,使得对于恒成立,若存在,求出的最小值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某书店销售刚刚上市的某知名品牌的高三数学单元卷,按事先拟定的价格进行5天试销,每种单价试销1天,得到如下数据:

单价(元)

18

19

20

21

22

销量(册)

61

56

50

48

45

1)求试销5天的销量的方差和的回归直线方程;

2)预计今后的销售中,销量与单价服从(1)中的回归方程,已知每册单元卷的成本是14元,为了获得最大利润,该单元卷的单价卷的单价应定为多少元?

(附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(x+φ)(A>0,0<φ<π),x∈R的最大值是1,其图象经过点
(1)求f(x)的解析式;
(2)已知 ,且 ,求f(α﹣β)的值.

查看答案和解析>>

同步练习册答案