【题目】学校为了解学生在课外读物方面的支出情况,抽取了n名同学进行调查,结果显示这些同学的支出都在[10,50)(单位:元),其中支出在[30,50)(单位:元)的同学有67人,其频率分布直方图如图所示,则n的值为( )
A. 100 B. 120 C. 130 D. 390
【答案】A
【解析】试题分析:根据小矩形的面积之和,算出位于10~30的2组数的频率之和为0.33,从而得到位于30~50的数据的频率之和为1﹣0.33=0.67,再由频率计算公式即可算出样本容量n的值.
解:∵位于10~20、20~30的小矩形的面积分别为
S1=0.01×10=0.1,S2=0.023×10=0.23,
∴位于10~20、20~30的据的频率分别为0.1、0.23
可得位于10~30的前3组数的频率之和为0.1+0.23=0.33
由此可得位于30~50数据的频率之和为1﹣0.33=0.67
∵支出在[30,50)的同学有67人,即位于30~50的频数为67,
∴根据频率计算公式,可得=0.67,解之得n=100
故选:A
科目:高中数学 来源: 题型:
【题目】某市为了鼓励市民节约用水,实行“阶梯式”水价,将该市每户居民的月用水量划分为三档:月用水量不超过4吨的部分按2元/吨收费,超过4吨但不超过8吨的部分按4元/吨收费,超过8吨的部分按8元/吨收费.
(1)求居民月用水量费用(单位:元)关于月用电量(单位:吨)的函数解析式;
(2)为了了解居民的用水情况,通过抽样,获得今年3月份100户居民每户的用水量,统计分析后得到如图所示的频率分布直方图,若这100户居民中,今年3月份用水费用不超过16元的占66%,求的值;
(3)在满足条件(2)的条件下,若以这100户居民用水量的频率代替该月全市居民用户用水量的概率.且同组中的数据用该组区间的中点值代替.记为该市居民用户3月份的用水费用,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量 =(1, ), =(sinx,cosx),设函数f(x)=
(1)求函数f(x)的最小正周期和最大值;
(2)设锐角△ABC的三个内角A,B,C的对边分别为a,b,c,若c= ,cosB= ,且f(C)= ,求b.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了了解2013年某校高三学生的视力情况,随机抽查了一部分学生视力,将调查结果分组,分组区间为,,… ,经过数据处理,得到如右频率分布表:
(1)求频率分布表中未知量的值;
(2)从样本中视力在和的所有同学中随机抽取两人,求两人的视力差的绝对值低于0.5的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某成衣批发店为了对一款成衣进行合理定价,将该款成衣按事先拟定的价格进行试销,得到了如下数据:
批发单价x(元) | 80 | 82 | 84 | 86 | 88 | 90 |
销售量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)求回归直线方程 ,其中
(2)预测批发单价定为85元时,销售量大概是多少件?
(3)假设在今后的销售中,销售量与批发单价仍然服从(1)中的关系,且该款成衣的成本价为40元/件,为使该成衣批发店在该款成衣上获得更大利润,该款成衣单价大约定为多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com