精英家教网 > 高中数学 > 题目详情

【题目】己知函数是定义域为的奇函数.

1)求实数的值;

2)若,不等式上恒成立,求实数的取值范围;

3)若,且函数上最小值为,求的值.

【答案】10232.

【解析】

1是定义域为的奇函数,由,得到的值;(2)根据得到的范围,从而得到的单调性,结合的奇偶性,得到将不等式转化为上恒成立,通过得到的范围;(3)由得到,从而得到解析式,令,得到,动轴定区间分类讨论,根据最小值为,得到的值.

1)因为是定义域为的奇函数,所以,所以,所以,经检验,当时,上的奇函数

2)由(1)知:

因为,所以

,所以

所以.上的单调递减函数,

是定义域为的奇函数,

所以

上恒成立,

所以

所以实数的取值范围为

3)因为,所以

解得(舍去)

所以

因为R上为增函数,且

所以

因为上最小值为

所以上的最小值为

因为的对称轴为

所以当时,

,解得(舍去),

时,,解得(舍去),

综上可知:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线l的参数方程为为参数,以坐标原点为极点,x轴的正半轴为极轴建建立极坐标系,曲线C的极坐标方程为

求曲线C的直角坐标方程与直线l的极坐标方程;

若直线与曲线C交于点不同于原点,与直线l交于点B,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20191018-27日,第七届世界军人运动会在湖北武汉举办,中国代表团共获得1336442铜,共239枚奖牌.为了调查各国参赛人员对主办方的满意程度,研究人员随机抽取了500名参赛运动员进行调查,所得数据如下所示,现有如下说法:①在参与调查的500名运动员中任取1人,抽到对主办方表示满意的男性运动员的概率为;②在犯错误的概率不超过1%的前提下可以认为是否对主办方表示满意与运动员的性别有关;③没有99.9%的把握认为是否对主办方表示满意与运动员的性别有关;则正确命题的个数为( )附:

男性运动员

女性运动员

对主办方表示满意

200

220

对主办方表示不满意

50

30

0.100

0.050

0.010

0.001

k

2.706

3.841

6.635

10.828

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为连续10天,每天新增疑似病例不超过7”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是

A. 甲地:总体均值为3,中位数为4 B. 乙地:总体均值为1,总体方差大于0

C. 丙地:中位数为2,众数为3 D. 丁地:总体均值为2,总体方差为3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆C经过)三点,M是线段上的动点,是过点且互相垂直的两条直线,其中y轴于点E交圆CPQ两点.

1)若,求直线的方程;

2)若是使恒成立的最小正整数

①求的值; ②求三角形的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确的是( )

A. 为真命题,则为真命题 B. 恒成立

C. 命题“”的否定是“ D. 命题“若”的逆否命题是“若,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为

(Ⅰ)求的解析式;

(Ⅱ)当,求的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】焦点在x轴上的椭圆C经过点,椭圆C的离心率为是椭圆的左、右焦点,P为椭圆上任意点.

1)求椭圆的标准方程;

2)若点M的中点(O为坐标原点),过M且平行于OP的直线l交椭圆CAB两点,是否存在实数,使得;若存在,请求出的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的奇函数满足,且时有,甲、乙、丙、丁四位同学有下列结论:

甲:

乙:函数上是增函数;

丙:函数关于直线对称;

丁:若,则关于的方程上所有根之和为.

其中正确的是(

A.乙、丁B.乙、丙C.甲、乙、丙D.乙、丙、丁

查看答案和解析>>

同步练习册答案