精英家教网 > 高中数学 > 题目详情
已知圆x2+y2=1,经过点P(-1,2)作圆的切线,则其切线方程为______.
圆x2+y2=1的圆心为O(0,0),半径r=1.
当直线l经过点P(-1,2)与x轴垂直时,方程为x=-1,
∵圆心到直线x=-1的距离等于半径,∴直线l与圆相切,符合题意;
当直线l经过点P(-1,2)与x轴不垂直时,设方程为y-2=k(x+1),即kx-y+k+2=0.
∵直线l与圆x2+y2=1相切,
∴圆心到直线l的距离等于半径,即d=
|k+2|
k2+1
=1,解之得k=-
3
4

因此直线l的方程为y-2=-
3
4
(x+1),化简得3x+4y-5=0.
综上所述,可得所求切线方程为x=-1或3x+4y-5=0.
故答案为:x=-1或3x+4y-5=0
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在单位正方形ABCD(边长为1个单位长度的正方形,如图所示)所在的平面上有点P满足条件|PA|2+|PB|2=|PC|2,试求点P到点D的距离的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆C的圆心C为(-3,4),且与x轴相切.
(1)求圆C的标准方程;
(2)若关于直线y=k(x-1)对称的两点M,N均在圆C上,且直线MN与圆x2+y2=2相切,试求直线MN的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过抛物线y2=4x的焦点F的直线与抛物线相交于A,B两点,自A,B向准线作垂线,垂足分别为A1、B1,则焦点F与以线段A1B1为直径的圆C之间的位置关系是(  )
A.焦点F在圆C上
B.焦点F在圆C内
C.焦点F在圆C外
D.随直线AB的位置改变而改变

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆C:x2+y2+2x-4y+3=0;
(1)若圆C的切线在x轴,y轴上的截距相等,求此切线方程;
(2)求圆C关于直线x-y-3=0的对称的圆方程
(3)从圆C外一点P(x1,y1)向圆引一条切线,切点为M,O为原点,且有|PM|=|PO|,求使|PM|最小的P点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知圆M:x2+y2=4,O为坐标原点,直线l与圆M相切,且与x轴正半轴、y轴正半轴分别交于A、B两点,则△OAB的面积最小值是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若直线x+
3
y+1=0与圆x2+y2+mx=0相切,则实数m的值是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线l过点A(-6,7)与圆C:x2+y2-8x+6y+21=0相切,
(1)求该圆的圆心坐标及半径长
(2)求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知一个圆截y轴所得的弦长为2,被x轴分成的两段弧长的比为3:1.
(1)设圆心(a,b),求实数a、b满足的关系式;
(2)当圆心到直线l:x-2y=0的距离最小时,求圆的方程.

查看答案和解析>>

同步练习册答案