精英家教网 > 高中数学 > 题目详情
13.已知直线l:ax+y+b=0与圆O:x2+y2=4相交于A、B两点,M($\sqrt{3}$,-1),且$\overrightarrow{OA}+\overrightarrow{OB}$=$\frac{2}{3}\overrightarrow{OM}$,则$\sqrt{3}$ab=-4.

分析 由题意,l⊥OM,且圆心O到直线l的距离为$\frac{1}{2}×\frac{2}{3}×|\overrightarrow{OM}|$=$\frac{2}{3}$,由此求出a,b,即可得出结论.

解答 解:由题意,l⊥OM,且圆心O到直线l的距离为$\frac{1}{2}×\frac{2}{3}×|\overrightarrow{OM}|$=$\frac{2}{3}$,
∴$\left\{\begin{array}{l}{a=-\sqrt{3}}\\{\frac{b}{\sqrt{{a}^{2}+1}}=\frac{2}{3}}\end{array}\right.$,
由于b>0,∴a=-$\sqrt{3}$,b=$\frac{4}{3}$,
∴$\sqrt{3}ab$=-4.
故答案为-4.

点评 本题考查圆的切线方程的求法,考查实数值的求法,是中档题,解题时要认真审题,注意圆的性质、点到直线的距离公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.“若a+b+c=3,则a2+b2+c2≥3”的否命题是若a+b+c≠3,则a2+b2+c2<3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知数列{an}满足an=an-1+an-2(n>2),且a2015=1,a2017=-1,则a2000=(  )
A.0B.-3C.-4D.-18

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在长方体ABCD-A1B1C1D1中,底面ABCD是边长为$\sqrt{2}$的正方形,AA1=3,E是AA1的中点,过C1作C1F⊥平面BDE与平面ABB1A1交于点F,则$\frac{AF}{{A{A_{1}}}}$等于(  )
A.$\frac{4}{7}$B.$\frac{5}{8}$C.$\frac{5}{9}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若以双曲线$\frac{x^2}{a^2}$-y2=1(a>0)的左、右焦点和点(1,2$\sqrt{2}$)为顶点的三角形为直角三角形,则此双曲线的焦距长为(  )
A.10B.8C.2$\sqrt{5}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.复数$\frac{1-i}{2i+1}$(i为虚数单位)的模等于(  )
A.$\frac{2}{5}$B.$\frac{\sqrt{10}}{5}$C.2D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若实数x,y满足约束条件$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-4≤0}\\{x-3y+3≤0}\end{array}\right.$,则z=4x+8y的最小值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=lnx,g(x)=$\frac{1}{2}{x^2}$-2x,当x>2时k(x-2)<xf(x)+2g'(x)+3恒成立,则整数k最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.证券公司提示:股市有风险,入市需谨慎.小强买的股票A连续4个跌停(一个跌停:比前一天收市价下跌10%),则至少需要几个涨停,才能不亏损(一个涨停:比前一天收市价上涨10%).(  )
A.3B.4C.5D.6

查看答案和解析>>

同步练习册答案