解:(I)证明:∵A
1在底面ABC上的射影恰为AC的中点D,
∴A
1D⊥面ABC,
∴A
1D⊥BC,
∠BCA=90°,
∴AC⊥BC
∵A
1D∩AC=D,
∴BC⊥平面ACC
1A
1;
(II)由(I)知,A
1D⊥面ABC,
AA
1在平面ABC的射影是AC,
∴∠A
1AD是AA
1与平面ABC所成的角,又A
1B⊥AC
1,A
1B在平面ACC
1A
1的投影为A
1C,
∴A
1C⊥AC,又ACC
1A
1是菱形,
∴AA
1=AC=a,AD=DC=
a,在Rt△A
1DA中,COS∠A
1AD=
=
得∠A
1AD=
(III)由(I)知BC⊥平面ACC
1A
1作CN⊥AA
1,于点N,连接BN,∠BNC是二面角B-AA
1 -C的平面角,
由图易知CN=
a,BC=a
∴在Rt△BCN中,tan∠BNC=
=
,
∴二面角B-AA
1 -C的平面角的正切值为
分析:(I)证明线面垂直,可用线垂直的判定定理,由题意知,可证A
1D⊥BC与AC⊥BC,再由定理得出结论;
(II)求线面角,要先作出线面角,由线面角的定义,线与线在面内的投影所成的角即为线面角,由此找出线面角,在相应的三角形中求出它的三角函数值,再求角;
(III)先由二面角的平面角的定作出二面角的平面角,再在三角形中求出此角的大小.
点评:本题考查与二面角有关的立体几何题,考查了二面角的求法,线面角的求法,线面垂直等立体几何问题,解题的关键是熟练掌握线面角的作法,二面角的作法及线面垂直证明的定理,本题考查了数形结合的思想,规律性强,