精英家教网 > 高中数学 > 题目详情
已知a是实数,函数f(x)=x2(x-a)
(1)如果f′(1)=3,求a的值;
(2)在(1)的条件下,求曲线y=f(x)在点(1,f(1))处的切线方程.
(1)∵f(x)=x2(x-a)=x3-ax2
∴f'(x)=3x2-2ax.
∵f′(1)=3,
∴f′(1)=3-2a=3,解得a=0.
(2)由(1)知a=0,
∴f(x)=x3,f'(x)=3x2
∴f(1)=1,f'(1)=3,
∴切线方程为y-1=3(x-1),即y=3x-2.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

函数的极大值为                   

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

方程x3-6x2+9x+1=0的实根个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=x3+ax2-12x的导函数为f′(x),若f′(x)的图象关于y轴对称.
(I)求函数f(x)的解析式;
(Ⅱ)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=x3+bx2+cx+d的大致图象如图所示,则x12+x22等于(  )
A.
8
9
B.
10
9
C.
16
9
D.
28
9

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=x+ax2+blnx,曲线y=f(x)过点P(1,0),且在点P处的切线斜率为2.
(Ⅰ)求a,b的值;
(Ⅱ)求f(x)的极值点;
(Ⅲ)对定义域内任意一个x,不等式f(x)≤2x-2是否恒成立,若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=lnx,g(x)=
a
x
(a>0),设F(x)=f(x)+g(x).
(Ⅰ)求F(x)的单调区间;
(Ⅱ)若以y=F(x)(x∈(0,3])图象上任意一点P(x0,y0)为切点的切线的斜率k
1
2
恒成立,求实数a的最小值.
(Ⅲ)是否存在实数m,使得函数y=g(
2a
x2+1
)+m-1的图象与y=f(1+x2)的图象恰好有四个不同的交点?若存在,求出m的取值范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若曲线y=x3在点P(1,1)处的切线与直线ax-by-2=0互相垂直,则
a
b
=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=x3-3x2+1,则在曲线y=f(x)的切线中,斜率最小的切线方程是______.

查看答案和解析>>

同步练习册答案