精英家教网 > 高中数学 > 题目详情
若曲线y=x3在点P(1,1)处的切线与直线ax-by-2=0互相垂直,则
a
b
=______.
求导函数,可得y′=3x2,当x=1时,y′=3,
∵y=x3在点P(1,1)处的切线与直线ax-by-2=0互相垂直,
∴3•
a
b
=-1
a
b
=-
1
3

故答案为:-
1
3
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

若函数f(x)=ax3-bx+4,当x=2时,函数f(x)有极值为-
4
3

(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若f(x)=k有3个解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3-x
(1)求曲线y=f(x)在点M(t,f(t))处的切线方程
(2)设a>0,如果过点(a,b)可作曲线y=f(x)的三条切线,证明:-a<b<f(a)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知a是实数,函数f(x)=x2(x-a)
(1)如果f′(1)=3,求a的值;
(2)在(1)的条件下,求曲线y=f(x)在点(1,f(1))处的切线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若曲线y=x3上的点P处的切线的斜率为3,则P点的坐标为(  )
A.(-2,-8)B.(-1,-1)C.(-2,-8)或(2,8)D.(-1,-1)或(1,1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3+x-16.求曲线y=f(x)在点(2,-6)处的切线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

lim
x→1
(
2
x2-1
-
1
x-1
)
=(  )
A.-1B.-
1
2
C.
1
2
D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

曲线y=x2-x上点A(2,2)处的切线与直线2x-y+5=0的夹角的正切值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知三次函数f(x)=
1
3
ax3+
1
2
bx2-6x+1(x∈R),a,b为实常数.
(1)若a=3,b=3时,求函数f(x)的极大、极小值;
(2)设函数g(x)=f′(x)+7,其中f′(x)是f(x)的导函数,若g(x)的导函数为g′(x),g′(0)>0,g(x)与x轴有且仅有一个公共点,求
g(1)
g′(0)
的最小值.

查看答案和解析>>

同步练习册答案