精英家教网 > 高中数学 > 题目详情

(本小题满分12分)

如图,在直三棱柱、中,平面丄平面.

(I)求证:AB 丄 BC

(II)若直线AC与平面所成的角为,二面角的大小为,试判断的大小关系,并予以证明.

 

 

 

 

 

 

【解及证】(Ⅰ)证明:如右图,过点A在平面A1ABB1内作ADA1BD,…………1分

 则由平面A1BC⊥侧面A1ABB1A1B,得AD⊥平面A1BC, …………2分 

又BC平面A1BC,∴ADBC.    …………3分

∵三棱柱ABCA1B1C1是直三棱柱,则AA1⊥底面ABC,∴AA1⊥BC. …4分

AA1AD=A,从而BC⊥侧面A1ABB1,        …………5分

AB侧面A1ABB1,故ABBC     ………………………6分

(Ⅱ)解法1:连接CD,则由(Ⅰ)知是直线AC与平面A1BC所成的角,…………7分

是二面角A1BCA的平面角,即      ………..…8分

于是在Rt△ADC中,………9分  在Rt△ADB中, ……….10分

ABAC,得所以      …………………….12分

解法2:由(Ⅰ)知,以点B为坐标原点,以BCBABB1所在的直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,        ………………7分

AA1=a,AC=b,AB=c,则 B(0,0,0), A(0,c,0),

 于是

 ……8分

设平面A1BC的一个法向量为=(x,y,z),则由 ……9分

可取=(0,,c),于是c>0,n的夹角为锐角,则互为余角.

 ∴sinθ=cosβ==,  cosφ=

于是由b,得

…..12分.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案