精英家教网 > 高中数学 > 题目详情
17.如图,在正方体ABCD-A1B1C1D1中,点M,N,E,F分别是CD、AB、DD1、AA1上的点,若MN与EF交于点Q,求证:D,A,Q三点共线.

分析 要证明D,A,Q三点共线,即证明EF和MN的交点在两个平面的交线AD上,利用公理三可得结论.

解答 证明:∵E,F∈平面A1D1DA,
∴直线EF?平面A1D1DA,
又∵Q∈直线EF,
∴Q∈平面A1D1DA,
同理可证:Q∈平面BCDA,
∴Q∈平面A1D1DA∩平面BCDA,
∵平面A1D1DA∩平面BCDA=直线AD,
∴Q∈直线AD,
即D,A,Q三点共线.

点评 所谓线共点问题就是证明三条或三条以上的直线交于一点.(1)证明三线共点的依据是公理3.(2)证明三线共点的思路是:先证两条直线交于一点,再证明第三条直线经过该点,把问题转化为证明点在直线上的问题.实际上,点共线、线共点的问题都可以转化为点在直线上的问题来处理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.在边长为a的正方形ABCD中任取一点P,则$\overrightarrow{PA}•\overrightarrow{PB}>0$的概率等于1-$\frac{π}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在长方体ABCD-A1B1C1D1中AA1=a,∠BAB1=∠B1A1C1=30°,则异面直线AB1与A1C1所成角的余弦值为$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.过点M(2,1)作曲线C:$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1的弦.使M是弦的三等分点.求弦所在直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知实数x,y满足x2+2y2=4,求$\frac{|2x+\frac{2{y}^{2}}{x}|}{\sqrt{(y-2)^{2}+(x+\frac{2y}{x})^{2}}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知曲线y=$\frac{1}{{e}^{x}+1}$,则曲线的切线斜率取得最小值时的直线方程为(  )
A.x+4y-2=0B.x-4y+2=0C.4x+2y-1=0D.4x-2y-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=x2+2x-3,x∈[0,2]的值域为[-3,5].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知双曲线x2-$\frac{{y}^{2}}{4}$=1,试问:是否存在过点A(2,1)的直线与双曲线交于相异两点P、Q.且点A平分线段PQ?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.过点P1(1,5)作一条直线交x轴于点A,过点P2(2,7)作直线P1A的垂线,交y轴于点B,点M在线段AB上,且|BM|:|MA|=1:2,求动点M的轨迹方程.

查看答案和解析>>

同步练习册答案