分析 假设存在这样的直线,设出P,Q的坐标,代入双曲线方程,两式相减,根据中点的坐标可知x1+x2和y1+y2的值,进而求得直线PQ的斜率,根据点斜式求得直线的方程,再加以检验即可判断.
解答 解:假设存在这样的直线,点A平分线段PQ.
设P(x1,y1),Q(x2,y2),
则x1+x2=4,y1+y2=2,
∵4x12-y12=4,4x22-y22=4,
∴16(x1-x2)-2(y1-y2)=0,
∴kPQ=8,
∴直线的方程为y-1=8(x-2),即8x-y-15=0.
联立双曲线方程,消去y,可得60x2-240x+229=0,
由判别式为2402-4×60×229>0,
可得存在这样的直线,点A平分线段PQ.
点评 涉及弦长的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 1 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com