精英家教网 > 高中数学 > 题目详情
6.已知双曲线x2-$\frac{{y}^{2}}{4}$=1,试问:是否存在过点A(2,1)的直线与双曲线交于相异两点P、Q.且点A平分线段PQ?

分析 假设存在这样的直线,设出P,Q的坐标,代入双曲线方程,两式相减,根据中点的坐标可知x1+x2和y1+y2的值,进而求得直线PQ的斜率,根据点斜式求得直线的方程,再加以检验即可判断.

解答 解:假设存在这样的直线,点A平分线段PQ.
设P(x1,y1),Q(x2,y2),
则x1+x2=4,y1+y2=2,
∵4x12-y12=4,4x22-y22=4,
∴16(x1-x2)-2(y1-y2)=0,
∴kPQ=8,
∴直线的方程为y-1=8(x-2),即8x-y-15=0.
联立双曲线方程,消去y,可得60x2-240x+229=0,
由判别式为2402-4×60×229>0,
可得存在这样的直线,点A平分线段PQ.

点评 涉及弦长的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.函数f(x)=|x-1|+|x+m|(m>0).
(1)若m=2,求f(x)≤3的解集;
(2)若f(x)≤3对任意x∈[-2,-m]恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在正方体ABCD-A1B1C1D1中,点M,N,E,F分别是CD、AB、DD1、AA1上的点,若MN与EF交于点Q,求证:D,A,Q三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{m{x}^{2}+2}{3x+n}$是奇函数,且f(2)=$\frac{5}{3}$,
(1)求实数m和n的值;
(2)函数f(x)在区间[-2,-1]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=|$lo{g}_{\frac{1}{2}}$x|.
(1)求函数f(x)的定义域;
(2)若函数f(x)>0,求x的取值范围;
(3)指出函数y=f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在三棱锥S-ABC中,SB⊥BC,SA⊥AC,SB=BC,SA=AC.平面ABC与平面SAC所成的角为60°,且三棱锥S-ABC的体积为$\frac{2\sqrt{6}}{15}$,则三棱锥的外接球的半径为(  )
A.3B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=(k+2)ax+2-b(a>0,且a≠1)是指数函数,则k=-1,b=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.一质点做匀变速直线运动,第1秒内通过2米,第3秒内通过6米,试求:
(1)质点运动的加速度.
(2)在第6秒内的平均速度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率与双曲线$\frac{y^2}{2}-\frac{x^2}{6}$=1的离心率互为倒数,且过点(-2,3).
(1)求椭圆C的方程;
(2)设椭圆C的左顶点为A,过点R(3,0)作与x轴不重合的直线l交椭圆于P,Q两点,连接AP,AQ并延长分别交直线x=$\frac{16}{3}$于M,N两点.试问直线MR,NR的斜率之积是否为定值?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

同步练习册答案