精英家教网 > 高中数学 > 题目详情
11.在三棱锥S-ABC中,SB⊥BC,SA⊥AC,SB=BC,SA=AC.平面ABC与平面SAC所成的角为60°,且三棱锥S-ABC的体积为$\frac{2\sqrt{6}}{15}$,则三棱锥的外接球的半径为(  )
A.3B.1C.2D.4

分析 设SB=BC=x,则SC=$\sqrt{2}$x,由题意SB=BC=SA=AC=x,SC为三棱锥的外接球的直径.过S点作SD⊥平面ABC,连接BD,AD,可知∠CBD=∠CAD=90°,∠SAD=60°,利用三棱锥的体积公式求出x,即可求出三棱锥的外接球的半径.

解答 解:如图所示,设SB=BC=x,则SC=$\sqrt{2}$x,由题意SB=BC=SA=AC=x,SC为三棱锥的外接球的直径.
过S点作SD⊥平面ABC,连接BD,AD,可知∠CBD=∠CAD=90°,∠SAD=60°,D点在AB边上的中线上,则AB被CD垂直平分,设交点为E,
∵SA=x,∴AD=$\frac{1}{2}$x,SD=$\frac{\sqrt{3}}{2}$x,
∴CD=$\frac{\sqrt{5}}{2}$x,
∴$\frac{1}{2}×x×\frac{1}{2}x$=$\frac{1}{2}$×$\frac{\sqrt{5}}{2}$x×AE,
∴AE=$\frac{1}{\sqrt{5}}$x,
又x2=CE×$\frac{\sqrt{5}}{2}$x,
∴CE=$\frac{2}{\sqrt{5}}$x,
∴S△ABC=$\frac{1}{2}×$$\frac{2}{\sqrt{5}}$x×$\frac{2}{\sqrt{5}}$x=$\frac{2}{5}$x2
∵三棱锥S-ABC的体积为$\frac{2\sqrt{6}}{15}$,
∴$\frac{2\sqrt{6}}{15}$=$\frac{1}{3}$×$\frac{2}{5}$x2×$\frac{\sqrt{3}}{2}$x,
∴x=$\sqrt{2}$,
∴SC=2,
∴三棱锥的外接球的半径为1,
故选:B.

点评 本题考查三棱锥体积的计算,考查三棱锥的外接球的半径,正确求体积是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.在如图所示的正方体ABCD-A1B1C1D1中,求:
(1)AA1与C1D1所成的角;
(2)AB1与C1D1所成的角;
(3)AC与A1B所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知曲线y=$\frac{1}{{e}^{x}+1}$,则曲线的切线斜率取得最小值时的直线方程为(  )
A.x+4y-2=0B.x-4y+2=0C.4x+2y-1=0D.4x-2y-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知圆台的上、下底面圆半径分别为r,R,且圆台有内切球,求圆台的全面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知双曲线x2-$\frac{{y}^{2}}{4}$=1,试问:是否存在过点A(2,1)的直线与双曲线交于相异两点P、Q.且点A平分线段PQ?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.抛物线C:y=x2在点P处的切线l分别交x轴、y轴于不同的两点A、B,$\overrightarrow{AM}=\frac{1}{2}\overrightarrow{MB}$.当点P在C上移动时,点M的轨迹为D.
(1)求曲线D的方程;
(2)设直线l与曲线D的另一个交点为N,曲线D在点M、N处的切线分别为m、n,直线m、n相交于点Q.证明:PQ平行于x轴.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{ax+b}{1-{x}^{2}}$是定义在(-1,1)上的奇函数,且f($\frac{1}{2}$)=$\frac{4}{3}$,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ax3+bx2+(c-3a-2b)x+d(a>0)的图象如图所示,该函数的单调增区间为(-∞,1)和(x0,+∞),单调减区间为(1,x0).
(1)求c,d的值;
(2)若x0=5,方程f(x)=8a有三个不同的根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知P是以F1(-c,0)和F2(c,0)为左、右焦点的椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上一点,满足$\frac{α}{sin∠P{F}_{1}{F}_{2}}=\frac{c}{sin∠P{F}_{2}{F}_{1}}$,则椭圆的离心率的取值范围为$[\sqrt{2}-1,1)$.

查看答案和解析>>

同步练习册答案