精英家教网 > 高中数学 > 题目详情
(2008•湖北模拟)如图,目标函数z=kx+y的可行域为四边形OABC(含边界),A(1,0)、C(0,1),若B(
3
4
2
3
)
为目标函数取最大值的最优解,则k的取值范围是
[
4
9
8
3
]
[
4
9
8
3
]
分析:先根据约束条件画出可行域,再利用几何意义求最值,z=kx+y表示直线在y轴上的截距,-k表示直线的斜率,只需求出-k的取值范围满足什么条件时,可行域直线在y轴上的截距最优解即可.
解答:解:由可行域可知,直线AB的斜率=
2
3
-0
3
4
-1
=-
8
3

直线BC的斜率=
2
3
-1
3
4
-0
=-
4
9

因为B(
3
4
2
3
)
为目标函数z=kx+y取最大值的最优解,
所以-k∈[-
8
3
,-
4
9
],所以k∈[
4
9
8
3
].
故答案为:[
4
9
8
3
].
点评:本题主要考查了简单的线性规划,以及利用几何意义求最值的方法反求参数的范围,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•湖北模拟)若等比数列的各项均为正数,前n项之和为S,前n项之积为P,前n项倒数之和为M,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•湖北模拟)已知f(x)=ax3+bx2+cx+d为奇函数,且在点(2,f(2))处的切线方程为9x-y-16=0.
(1)求f(x)的解析式;
(2)若y=f(x)+m的图象与x轴仅有一个公共点,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•湖北模拟)某工厂去年某产品的年产量为100万只,每只产品的销售价为10元,固定成本为8元.今年,工厂第一次投入100万元(科技成本),并计划以后每年比上一年多投入100万元(科技成本),预计产量年递增10万只,第n次投入后,每只产品的固定成本为g(n)=
k
n+1
(k>0,k为常数,n∈Z且n≥0),若产品销售价保持不变,第n次投入后的年利润为f(n)万元.
(1)求k的值,并求出f(n)的表达式;
(2)问从今年算起第几年利润最高?最高利润为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•湖北模拟)已知向量
a
=(1,2),向量
b
=(x,-2),且
a
∥(
a
-
b
)
,则实数x等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•湖北模拟)已知向量
a
=(2cosx,tan(x+α))
b
=(
2
sin(x+α),tan(x-α))
,已知角α(α∈(-
π
2
π
2
))
的终边上一点P(-t,-t)(t≠0),记f(x)=
a
b

(1)求函数f(x)的最大值,最小正周期;
(2)作出函数f(x)在区间[0,π]上的图象.

查看答案和解析>>

同步练习册答案