精英家教网 > 高中数学 > 题目详情

【题目】如图,在圆锥PO中,已知,圆O的直径,C是弧AB的中点,D为AC的中点.

(1)求异面直线PD和BC所成的角的正切值;

(2)求直线OC和平面PAC所成角的正弦值.

【答案】12;(2

【解析】

试题(1)异面直线所成的角,往往通过平移转化到一个三角形内求解.本题转化到直角三角形PDO中求解.(2)直线与平面所成的角,应先作出直线在平面内的射影,则斜线与射影所成的角即为所求.本题过点O向平面PAC作垂线,则即为直线与平面所成的角,进而求出其正弦值.

试题解析:(1OD分别是ABAC的中点

OD//BC

异面直线PDBC所成的角为∠PDO

△ABC中,的中点

2)因为

所以

所以平面在平面中,过

连结,则上的射影,

所以是直线和平面所成的角.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设直线l1 , l2分别是函数f(x)= 图象上点P1 , P2处的切线,l1与l2垂直相交于点P,且l1 , l2分别与y轴相交于点A,B,则△PAB的面积的取值范围是(  )
A.(0,1)
B.(0,2)
C.(0,+∞)
D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O′的直径,FB是圆台的一条母线.

(1)已知G,H分别为EC,FB的中点,求证:GH∥平面ABC;
(2)已知EF=FB= AC=2 AB=BC,求二面角F﹣BC﹣A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga(a>0且a≠1).

(1)求f(x)的定义域;

(2)当0<a<1时,判断f(x)在(2,+∞)的单惆性;

(3)是否存在实数a,使得当f(x)的定义域为[m,n]时,值域为[1+logan,1+1ogam],若存在,求出实数a的范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一块正方形EFGH,EH所在直线是一条小河,收获的蔬菜可送到F点或河边运走.于是,菜地分别为两个区域S1和S2 , 其中S1中的蔬菜运到河边较近,S2中的蔬菜运到F点较近,而菜地内S1和S2的分界线C上的点到河边与到F点的距离相等,现建立平面直角坐标系,其中原点O为EF的中点,点F的坐标为(1,0),如图

(1)求菜地内的分界线C的方程;
(2)菜农从蔬菜运量估计出S1面积是S2面积的两倍,由此得到S1面积的经验值为 .设M是C上纵坐标为1的点,请计算以EH为一边,另一边过点M的矩形的面积,及五边形EOMGH的面积,并判断哪一个更接近于S1面积的经验值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为(  )
A.24
B.48
C.60
D.72

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在区间[0,1]上给定曲线yx2.试在此区间内确定点t的值,使图中的阴影部分的面积S1S2之和最小,并求最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

)讨论的单调性;

)若恒成立,证明:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)若函数上为减函数,求实数的最小值;

2)若存在,使成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案