【题目】如图,在圆锥PO中,已知,圆O的直径,C是弧AB的中点,D为AC的中点.
(1)求异面直线PD和BC所成的角的正切值;
(2)求直线OC和平面PAC所成角的正弦值.
科目:高中数学 来源: 题型:
【题目】设直线l1 , l2分别是函数f(x)= 图象上点P1 , P2处的切线,l1与l2垂直相交于点P,且l1 , l2分别与y轴相交于点A,B,则△PAB的面积的取值范围是( )
A.(0,1)
B.(0,2)
C.(0,+∞)
D.(1,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O′的直径,FB是圆台的一条母线.
(1)已知G,H分别为EC,FB的中点,求证:GH∥平面ABC;
(2)已知EF=FB= AC=2 AB=BC,求二面角F﹣BC﹣A的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=loga(a>0且a≠1).
(1)求f(x)的定义域;
(2)当0<a<1时,判断f(x)在(2,+∞)的单惆性;
(3)是否存在实数a,使得当f(x)的定义域为[m,n]时,值域为[1+logan,1+1ogam],若存在,求出实数a的范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有一块正方形EFGH,EH所在直线是一条小河,收获的蔬菜可送到F点或河边运走.于是,菜地分别为两个区域S1和S2 , 其中S1中的蔬菜运到河边较近,S2中的蔬菜运到F点较近,而菜地内S1和S2的分界线C上的点到河边与到F点的距离相等,现建立平面直角坐标系,其中原点O为EF的中点,点F的坐标为(1,0),如图
(1)求菜地内的分界线C的方程;
(2)菜农从蔬菜运量估计出S1面积是S2面积的两倍,由此得到S1面积的经验值为 .设M是C上纵坐标为1的点,请计算以EH为一边,另一边过点M的矩形的面积,及五边形EOMGH的面积,并判断哪一个更接近于S1面积的经验值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com