精英家教网 > 高中数学 > 题目详情

【题目】用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为(  )
A.24
B.48
C.60
D.72

【答案】D
【解析】解:要组成无重复数字的五位奇数,则个位只能排1,3,5中的一个数,共有3种排法,然后还剩4个数,剩余的4个数可以在十位到万位4个位置上全排列,共有 =24种排法.由分步乘法计数原理得,由1、2、3、4、5组成的无重复数字的五位数中奇数有3×24=72个.
故选:D.
用1、2、3、4、5组成无重复数字的五位奇数,可以看作是填5个空,要求个位是奇数,其它位置无条件限制,因此先从3个奇数中任选1个填入,其它4个数在4个位置上全排列即可.;本题考查了排列、组合及简单的计数问题,此题是有条件限制排列,解答的关键是做到合理的分布,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知α是三角形的内角sinαcosα.

(1)求tanα的值;

(2)将tanα表示出来并求其值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=a(x﹣lnx)+ ,a∈R.
(1)讨论f(x)的单调性;
(2)当a=1时,证明f(x)>f′(x)+ 对于任意的x∈[1,2]成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

)当时,求曲线在点处的切线方程.

)求函数单调区间和极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在圆锥PO中,已知,圆O的直径,C是弧AB的中点,D为AC的中点.

(1)求异面直线PD和BC所成的角的正切值;

(2)求直线OC和平面PAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数. f(x)的单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(12)如图所示,函数的一段图象过点

1)求函数的表达式;

2)将函数的图象向右平移个单位,得函数的图象,求函数的最大值,并求此时自变量的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C的参数方程为(a>0,β为参数).以O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos .

(1)若曲线Cl只有一个公共点,求a的值;

(2)AB为曲线C上的两点,且∠AOB,求△OAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x
(1)若f(x)=2,求x的值;
(2)若2tf(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案