精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=2x
(1)若f(x)=2,求x的值;
(2)若2tf(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围.

【答案】
(1)解:当x≤0时f(x)=0,

当x>0时,

有条件可得,

即22x﹣2×2x﹣1=0,解得 ,∵2x>0,∴ ,∴


(2)解:当t∈[1,2]时,

即m(22t﹣1)≥﹣(24t﹣1).∵22t﹣1>0,∴m≥﹣(22t+1).

∵t∈[1,2],∴﹣(1+22t)∈[﹣17,﹣5],

故m的取值范围是[﹣5,+∞)


【解析】(1)当x≤0时得到f(x)=0而f(x)=2,所以无解;当x>0时解出f(x)=2求出x即可;(2)由t∈[1,2]时,2tf(2t)+mf(t)≥0恒成立得到,得到f(t)= ,代入得到m的范围即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为(  )
A.24
B.48
C.60
D.72

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的首项为1,Sn为数列{an}的前n项和,Sn+1=qSn+1,其中q>0,n∈N*
(1)若2a2 , a3 , a2+2成等差数列,求an的通项公式;
(2)设双曲线x2 =1的离心率为en , 且e2= ,证明:e1+e2++en

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=x2+ax+b,实数x1x2满足x1∈(a-1,a),x2∈(a+1,a+2).

(Ⅰ)若a-,求证:fx1)>fx2);

(Ⅱ)若fx1)=fx2)=0,求b-2a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)若函数上为减函数,求实数的最小值;

2)若存在,使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x3+ax2﹣a2x+1,g(x)=ax2﹣2x+1,其中实数a≠0.
(1)若a>0,求函数f(x)的单调区间;
(2)当函数y=f(x)与y=g(x)的图象只有一个公共点且g(x)存在最小值时,记g(x)的最小值为h(a),求h(a)的值域;
(3)若f(x)与g(x)在区间(a,a+2)内均为增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}满足 ,Sn是{an}的前n项和,则S40=(
A.880
B.900
C.440
D.450

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 为圆的直径在圆 矩形所在的平面和圆所在的平面互相垂直.

1)求证:平面平面

2)求几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax(a>0且a≠1)的图象过的(-2,16).

(1)求函数f(x)的解析式;

(2)若f(2m+5)<f(3m+3),求m的取值范围.

【答案】(1)f(x)=; (2)m<2.

【解析】

(1)将代入可得从而可得函数的解析式;(2)根据(1)中所求解析式判断是实数集上的减函数,不等式等价于,解不等式即可得结果.

(1)∵函数f(x)=ax(a>0且a≠1)的图象过点(-2,16),

∴a-2=16

∴a=,即f(x)=

(2)∵f(x)=为减函数,f(2m+5)<f(3m+3),

∴2m+5>3m+3,

解得m<2.

【点睛】

本题主要考查了指数函数的解析式和指数函数单调性的应用,意在考查综合应用所学知识解答问题的能力,属于基础题.

型】解答
束】
19

【题目】2017年APEC会议于11月10日至11日在越南岘港举行,某研究机构为了了解各年龄层对APEC会议的关注程度,随机选取了100名年龄在[20,45]内的市民举行了调查,并将结果绘制成如图所示的频率分布直方图(分组区间分布为[20,25),[25.30),[30,35),[35,40),[40,45]).

(1)求选取的市民年龄在[30,35)内的人数;

(2)若从第3,4组用分层抽样的方法选取5名市民进行座谈,再从中选取2人参与APEC会议的宣传活动,求参与宣传活动的市民中至少有一人的年龄在[35,40)内的概率.

查看答案和解析>>

同步练习册答案