【题目】已知函数f(x)=2x﹣ .
(1)若f(x)=2,求x的值;
(2)若2tf(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围.
科目:高中数学 来源: 题型:
【题目】已知数列{an}的首项为1,Sn为数列{an}的前n项和,Sn+1=qSn+1,其中q>0,n∈N* .
(1)若2a2 , a3 , a2+2成等差数列,求an的通项公式;
(2)设双曲线x2﹣ =1的离心率为en , 且e2= ,证明:e1+e2++en> .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+ax+b,实数x1,x2满足x1∈(a-1,a),x2∈(a+1,a+2).
(Ⅰ)若a<-,求证:f(x1)>f(x2);
(Ⅱ)若f(x1)=f(x2)=0,求b-2a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=x3+ax2﹣a2x+1,g(x)=ax2﹣2x+1,其中实数a≠0.
(1)若a>0,求函数f(x)的单调区间;
(2)当函数y=f(x)与y=g(x)的图象只有一个公共点且g(x)存在最小值时,记g(x)的最小值为h(a),求h(a)的值域;
(3)若f(x)与g(x)在区间(a,a+2)内均为增函数,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax(a>0且a≠1)的图象过的(-2,16).
(1)求函数f(x)的解析式;
(2)若f(2m+5)<f(3m+3),求m的取值范围.
【答案】(1)f(x)=; (2)m<2.
【解析】
(1)将代入可得,从而可得函数的解析式;(2)根据(1)中所求解析式判断是实数集上的减函数,不等式等价于,解不等式即可得结果.
(1)∵函数f(x)=ax(a>0且a≠1)的图象过点(-2,16),
∴a-2=16
∴a=,即f(x)=,
(2)∵f(x)=为减函数,f(2m+5)<f(3m+3),
∴2m+5>3m+3,
解得m<2.
【点睛】
本题主要考查了指数函数的解析式和指数函数单调性的应用,意在考查综合应用所学知识解答问题的能力,属于基础题.
【题型】解答题
【结束】
19
【题目】2017年APEC会议于11月10日至11日在越南岘港举行,某研究机构为了了解各年龄层对APEC会议的关注程度,随机选取了100名年龄在[20,45]内的市民举行了调查,并将结果绘制成如图所示的频率分布直方图(分组区间分布为[20,25),[25.30),[30,35),[35,40),[40,45]).
(1)求选取的市民年龄在[30,35)内的人数;
(2)若从第3,4组用分层抽样的方法选取5名市民进行座谈,再从中选取2人参与APEC会议的宣传活动,求参与宣传活动的市民中至少有一人的年龄在[35,40)内的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com