精英家教网 > 高中数学 > 题目详情
设函数f(x)=
ax-1x+1
(a∈R).
(1)当a=1时,求满足f(x)>2的x的集合
(2)求a的取值范围,使f(x)在区间(0,+∞)上是单调递增函数.
分析:(1)将f(x)>2化为f(x)-2>0,通分后化为整式不等式去解.
(2)利用单调函数的定义,设0<x1<x2,a的取值使得f(x2 )-f(x1 )>0恒成立即可.
解答:解:(1)当a=1时,即为
x-1
x+1
>2?
x+3
x+1
<0?-3<x<-1
∴满足f(x)>2的x的集合为(-3,-1)
(2)设0<x1x2,则f(x1)-f(x2)=
ax1-1
x1+1
-
ax2-1
x2+1
=
(a+1)(x1-x2)
(x1+1)(x2+1)
∵(x1+1)(x2+1)>0,x1-x2<0

∴使f(x)在区间(0,+∞)上是单调递增函数,a>1.
点评:本题考查分式不等式解法、函数单调性的定义及应用,参数的取值范围问题,考查转化、计算、逻辑思维能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ax+
xx-1
(x>1),若a是从1,2,3三个数中任取一个数,b是从2,3,4,5四个数中任取一个数,求f(x)>b恒成立的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+b的图象经过点(1,7),又其反函数的图象经过点(4,0),求函数的解析式,并求f(-2)、f(
12
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+bx-cx,其中a,b,c是△ABC的三条边,且c>a,c>b,则“△ABC为钝角三角形”是“?x∈(1,2),使f(x)=0”(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•杨浦区一模)(文)设函数f(x)=ax+1-2(a>1)的反函数为y=f-1(x),则f-1(-1)=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网设函数f(x)=(a
x
-
1
x
)n
,其中n=3
π
sin(π+x)dx,a为如图所示的程序框图中输出的结果,则f(x)的展开式中常数项是(  )
A、-
5
2
B、-160
C、160
D、20

查看答案和解析>>

同步练习册答案