精英家教网 > 高中数学 > 题目详情

已知f(x)是定义在R上的偶函数,并满足:数学公式,当2≤x≤3,f(x)=x,则f(5.5)=


  1. A.
    5.5
  2. B.
    -5.5
  3. C.
    -2.5
  4. D.
    2.5
D
分析:先由,证明函数为周期为4的周期函数,再利用周期性和对称性,将f(5.5)转化到2≤x≤3时的函数值,具体是f(5.5)=f(1.5)=f(-1.5)=f(2.5)
解答:∵,∴==f(x)
∴f(x+4)=f(x),即函数f(x)的一个周期为4
∴f(5.5)=f(1.5+4)=f(1.5)
∵f(x)是定义在R上的偶函数
∴f(5.5)=f(1.5)=f(-1.5)=f(-1.5+4)=f(2.5)
∵当2≤x≤3,f(x)=x
∴f(2.5)=2.5
∴f(5.5)=2.5
故选D
点评:本题考察了函数的周期性和函数的奇偶性,能由已知抽象表达式推证函数的周期性,是解决本题的关键,函数值的转化要有较强的观察力
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义在(-4,4)上的奇函数,它在定义域内单调递减 若a满足f(1-a)+f(2a-3)小于0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a,b∈[-1,1],a+b≠0时,都有
f(a)+f(b)
a+b
>0

(1)证明函数a=1在f(x)=-x2+x+lnx上是增函数;
(2)解不等式:f(
1
x-1
)>0,x∈(0,+∞);
(3)若f′(x)=-2x+1+
1
x
=-
2x2-x-1
x
对所有f'(x)=0,任意x=-
1
2
恒成立,求实数x=1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

8、已知f(x)是定义在R上的函数,f(1)=1,且对任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,则g(2009)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在实数集R上的增函数,且f(1)=0,函数g(x)在(-∞,1]上为增函数,在[1,+∞)上为减函数,且g(4)=g(0)=0,则集合{x|f(x)g(x)≥0}=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在(-∞,+∞)上的偶函数,且在(-∞,0)上是增函数,设a=f(log47),b=f(log
12
3)
,c=f(0.2-0.6),则a,b,c的大小关系
a>b>c
a>b>c

查看答案和解析>>

同步练习册答案