精英家教网 > 高中数学 > 题目详情
已知椭圆的左右两焦点分别为是椭圆上一点,且在轴上方,

(1)求椭圆的离心率的取值范围;
(2)当取最大值时,过的圆的截轴的线段长为6,求椭圆的方程;
(3)在(2)的条件下,过椭圆右准线上任一点引圆的两条切线,切点分别为.试探究直线是否过定点?若过定点,请求出该定点;否则,请说明理由.
(1);(2);(3).

试题分析:(1)由,,.即可求得的取值范围.
(2)由(1)可得.以及是圆的直径可得.即可求出椭圆的方程.
(3)由(2)可得圆Q的方程.切点M,N所在的圆的方程上任一点坐标为P(x,y).由.即得.则M,N所在的直线方程为.两圆方程对减即可得到.根据过定点的知识即可求出定点.本题涉及的知识点较多,渗透方程的思想,加强对几何图形的关系理解.
试题解析: , ∴
(1),∴,在上单调递减.
时,最小时,最大,∴,∴
(2)当时,,∴,∴
,∴是圆的直径,圆心是的中点,∴在y轴上截得的弦长就是直径,∴=6.又,∴.∴椭圆方程是    10分
(3)由(2)得到,于是圆心,半径为3,圆的方程是.椭圆的右准线方程为,,∵直线AM,AN是圆Q的两条切线,∴切点M,N在以AQ为直径的圆上.设A点坐标为,∴该圆方程为.∴直线MN是两圆的公共弦,两圆方程相减得:,这就是直线MN的方程.该直线化为:
∴直线MN必过定点.                     16分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆经过点,离心率为
(1)求椭圆C的方程:
(2)过点Q(1,0)的直线l与椭圆C相交于A、B两点,点P(4,3),记直线PA,PB的斜率分别为k1,k2,当k1·k2最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

定义:对于两个双曲线,,若的实轴是的虚轴,的虚轴是的实轴,则称,为共轭双曲线.现给出双曲线和双曲线,其离心率分别为.
(1)写出的渐近线方程(不用证明);
(2)试判断双曲线和双曲线是否为共轭双曲线?请加以证明.
(3)求值:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,直线l与抛物线y2=4x相交于不同的A、B两点.
(1)如果直线l过抛物线的焦点,求·的值;
(2)如果·=-4,证明直线l必过一定点,并求出该定点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在原点,焦点在轴上,离心率为,长轴长为,直线交椭圆于不同的两点
(1)求椭圆的方程;
(2)求的取值范围;
(3)若直线不经过椭圆上的点,求证:直线的斜率互为相反数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆的左焦点为,离心率为,过点且与轴垂直的直线被椭圆截得的线段长为
(1)求椭圆方程;
(2)过点的直线与椭圆交于不同的两点,当面积最大时,求

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆的左、右焦点分别是,下顶点为,线段的中点为为坐标原点),如图.若抛物线轴的交点为,且经过两点.

(Ⅰ)求椭圆的方程;
(Ⅱ)设为抛物线上的一动点,过点作抛物线的切线交椭圆两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设AB是椭圆的长轴,点C在椭圆上,且,若AB=4,,则椭圆的两个焦点之间的距离为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

以抛物线的焦点为圆心,且与双曲线的两条渐近线都相切的圆的方程为        .

查看答案和解析>>

同步练习册答案