精英家教网 > 高中数学 > 题目详情
定义:对于两个双曲线,,若的实轴是的虚轴,的虚轴是的实轴,则称,为共轭双曲线.现给出双曲线和双曲线,其离心率分别为.
(1)写出的渐近线方程(不用证明);
(2)试判断双曲线和双曲线是否为共轭双曲线?请加以证明.
(3)求值:.
(1);(2)是;(3)1.

试题分析:(1)由其图像很容易知道的渐近线方程即轴和一、三象限的角平分线.从而写出
的渐近线方程都是:;(2)先利用渐近线与实轴、虚轴间的关系得到的实轴所在直线为
与虚轴所在直线为.然后计算实轴与双曲线
的交点,从而得到 、.同理也可得到的类似数据,从
而得到证明;(3)由上问即可得到,所以="1" .
试题解析:(1)的渐近线方程都是:.               3分
(2)双曲线是共轭双曲线.                            4分
证明如下: 对于,实轴和虚轴所在的直线是的角平分线所
的直线, 所以的实轴所在直线为
虚轴所在直线为,                       6分
实轴的交点到原点的距离的平方.
,所以 从而得;     8分
同理对于,实轴所在直线为
虚轴所在直线为
实轴的交点到原点的距离的平方
 ,所以,从而得.
综上所述,双曲线是共轭双曲线.                             10分
(3) 由(2)易得
所以="1" .                                                13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆E的中心是原点O,其右焦点为F(2,0),过x轴上一点A(3,0)作直线与椭圆E相交于P,Q两点,且的最大值为.

(Ⅰ)求椭圆E的方程;
(Ⅱ)设,过点P且平行于y轴的直线与椭圆E相交于另一点M,试问M,F,Q是否共线,若共线请证明;反之说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某校同学设计一个如图所示的“蝴蝶形图案(阴影区域)”,其中是过抛物线焦点的两条弦,且其焦点,点轴上一点,记,其中为锐角.

(1)求抛物线方程;
(2)求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线方程2x2-y2=2.
(1)求以A(2,1)为中点的双曲线的弦所在的直线方程;
(2)过点(1,1)能否作直线l,使l与双曲线交于Q1,Q2两点,且Q1,Q2两点的中点为(1,1)?如果存在,求出它的方程;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆的长轴为AB,过点B的直线
轴垂直,椭圆的离心率,F为椭圆的左焦点,且

(1)求此椭圆的标准方程;
(2)设P是此椭圆上异于A,B的任意一点, 轴,H为垂足,延长HP到点Q,使得HP=PQ,连接AQ并延长交直线于点,的中点,判定直线与以为直径的圆O位置关系。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在原点,离心率,右焦点为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的上顶点为,在椭圆上是否存在点,使得向量共线?若存在,求直线的方程;若不存在,简要说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左右两焦点分别为是椭圆上一点,且在轴上方,

(1)求椭圆的离心率的取值范围;
(2)当取最大值时,过的圆的截轴的线段长为6,求椭圆的方程;
(3)在(2)的条件下,过椭圆右准线上任一点引圆的两条切线,切点分别为.试探究直线是否过定点?若过定点,请求出该定点;否则,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,斜率为的直线过抛物线的焦点,与抛物线交于两点A、B, M为抛物线弧AB上的动点.

(Ⅰ)若,求抛物线的方程;
(Ⅱ)求△ABM面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线的左右焦点分别为为双曲线的中心,是双曲线右支上的点,的内切圆的圆心为,且圆轴相切于点,过作直线的垂线,垂足为,若为双曲线的离心率,则(   )
A.B.
C.D.关系不确定

查看答案和解析>>

同步练习册答案