精英家教网 > 高中数学 > 题目详情
如图,已知椭圆E的中心是原点O,其右焦点为F(2,0),过x轴上一点A(3,0)作直线与椭圆E相交于P,Q两点,且的最大值为.

(Ⅰ)求椭圆E的方程;
(Ⅱ)设,过点P且平行于y轴的直线与椭圆E相交于另一点M,试问M,F,Q是否共线,若共线请证明;反之说明理由.
(Ⅰ) ; (Ⅱ)参考解析

试题分析:(Ⅰ)因为右焦点为F(2,0),所以可得c=2,又因为过x轴上一点A(3,0)作直线与椭圆E相交于P,Q两点,且的最大值为.所以.再利用椭圆中的关系式.即可求出b的值,从而可得结论.
(Ⅱ)假设.通过以及点在椭圆上,消去.即可得一个用表示的一个等式.又由于.通过对比向量即可得结论.
试题解析:(1)由题意可知:,则,从而,故所求椭圆的方程为.                   5分
(2)解:三点共线.
证明:由已知得方程组
注意到,解得,因为,所以
,

,所以,从而三点共线。            12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知抛物线,点,过的直线交抛物线两点.
(1)若,抛物线的焦点与中点的连线垂直于轴,求直线的方程;
(2)设为小于零的常数,点关于轴的对称点为,求证:直线过定点

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆经过点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的左、右焦点分别为,过点的直线交椭圆两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:的一个焦点是(1,0),两个焦点与短轴的一个端点构成等边三角形.
(1)求椭圆C的方程;
(2)过点Q(4,0)且不与坐标轴垂直的直线l交椭圆C于A、B两点,设点A关于x轴的
对称点为A1.求证:直线A1B过x轴上一定点,并求出此定点坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点在抛物线上.
(1)若的三个顶点都在抛物线上,记三边所在直线的斜率分别为,求的值;
(2)若四边形的四个顶点都在抛物线上,记四边所在直线的斜率分别为,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆上的点到其两焦点距离之和为,且过点
(Ⅰ)求椭圆方程;
(Ⅱ)为坐标原点,斜率为的直线过椭圆的右焦点,且与椭圆交于点,若,求△的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆经过点,离心率为
(1)求椭圆C的方程:
(2)过点Q(1,0)的直线l与椭圆C相交于A、B两点,点P(4,3),记直线PA,PB的斜率分别为k1,k2,当k1·k2最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

定义:对于两个双曲线,,若的实轴是的虚轴,的虚轴是的实轴,则称,为共轭双曲线.现给出双曲线和双曲线,其离心率分别为.
(1)写出的渐近线方程(不用证明);
(2)试判断双曲线和双曲线是否为共轭双曲线?请加以证明.
(3)求值:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过点且和抛物线相切的直线方程为                  .

查看答案和解析>>

同步练习册答案