精英家教网 > 高中数学 > 题目详情
已知椭圆C:的一个焦点是(1,0),两个焦点与短轴的一个端点构成等边三角形.
(1)求椭圆C的方程;
(2)过点Q(4,0)且不与坐标轴垂直的直线l交椭圆C于A、B两点,设点A关于x轴的
对称点为A1.求证:直线A1B过x轴上一定点,并求出此定点坐标.
(1);(2)定点(1,0).

试题分析:(1)求椭圆C的方程,由题意,焦点坐标为,可求得,再根据椭圆两个焦点与短轴的一个端点构成等边三角形.由等边三角形的性质,可求得的关系式,可求得,进而求得,则椭圆的方程可得;(2)求证:直线轴上一定点,并求出此定点坐标.这是过定点问题,这类题的处理方法有两种,一.可设出直线方程为,然后利用条件建立等量关系进行消元,借助于直线系的思想找出定点.二.从特殊情况入手,先探求定点,再证明与变量无关.本题可设直线的方程为:,与椭圆方程联立消去,设出,则可利用韦达定理求得的表达式,根据点坐标求得关于轴对称的点的坐标,设出定点,利用求得,从而得证.
试题解析:(1)椭圆C:的一个焦点是(1,0),所以半焦距,又因为椭圆两个焦点与短轴的一个端点构成等边三角形,所以,解得,所以椭圆C的标准方程为;·           5分

(2)设直线联立并消去得:
.

.            8分
由A关于轴的对称点为,得,根据题设条件设定点为,0),
,即.
所以
即定点(1,0).     13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知△的两个顶点的坐标分别是,且所在直线的斜率之积等于
(1)求顶点的轨迹的方程,并判断轨迹为何种圆锥曲线;
(2)当时,过点的直线交曲线两点,设点关于轴的对称点为(不重合), 试问:直线轴的交点是否是定点?若是,求出定点,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,椭圆的的一个顶点和两个焦点构成的三角形的面积为4,
(1)求椭圆C的方程;
(2)已知直线与椭圆C交于A, B两点,若点M(, 0),求证为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知点,点在直线上运动,过点垂直的直线和线段的垂直平分线相交于点
(1)求动点的轨迹的方程;
(2)过(1)中的轨迹上的定点作两条直线分别与轨迹相交于两点.试探究:当直线的斜率存在且倾斜角互补时,直线的斜率是否为定值?若是,求出这个定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知曲线.
(1)若曲线是焦点在轴上的椭圆,求的取值范围;
(2)设,过点的直线与曲线交于,两点,为坐标原点,若为直角,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆E的中心是原点O,其右焦点为F(2,0),过x轴上一点A(3,0)作直线与椭圆E相交于P,Q两点,且的最大值为.

(Ⅰ)求椭圆E的方程;
(Ⅱ)设,过点P且平行于y轴的直线与椭圆E相交于另一点M,试问M,F,Q是否共线,若共线请证明;反之说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为且与双曲线有共同焦点.
(1)求椭圆的方程;
(2)在椭圆落在第一象限的图像上任取一点作的切线,求与坐标轴围成的三角形的面积的最小值;
(3)设椭圆的左、右顶点分别为,过椭圆上的一点轴的垂线交轴于点,若点满足,连结于点,求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆)的右焦点为,离心率为.
(Ⅰ)若,求椭圆的方程;
(Ⅱ)设直线与椭圆相交于两点,分别为线段的中点. 若坐标原点在以为直径的圆上,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线方程2x2-y2=2.
(1)求以A(2,1)为中点的双曲线的弦所在的直线方程;
(2)过点(1,1)能否作直线l,使l与双曲线交于Q1,Q2两点,且Q1,Q2两点的中点为(1,1)?如果存在,求出它的方程;如果不存在,说明理由.

查看答案和解析>>

同步练习册答案