精英家教网 > 高中数学 > 题目详情
已知双曲线方程2x2-y2=2.
(1)求以A(2,1)为中点的双曲线的弦所在的直线方程;
(2)过点(1,1)能否作直线l,使l与双曲线交于Q1,Q2两点,且Q1,Q2两点的中点为(1,1)?如果存在,求出它的方程;如果不存在,说明理由.
(1);(2)直线l不存在,理由详见解析

试题分析:(1)设出弦的两端点,代入双曲线方程,作差即可得到弦所在直线的斜率,再利用点斜式求直线方程。(2)同(1)中方法可求得弦所在直线方程,代入双曲线,消掉y(或x)整理出关于x的一元二次方程,看判别式。若判别式大于等于0,则所求直线存在,否则不存在。
试题解析:(1)设弦的两端点为,因为A(2,1)为中点,所以。因为在双曲线上所以,两式相减得,所以,所以
所以所求弦所在直线方程为,即
将直线方程代入双曲线方程,整理成关于x的一元二次方程,经检验
(2)假设直线l存在,由(1)中方法可求得直线方程为,联立方程,消去y得,因为,因此直线与双曲线无交点,所以直线l不存在。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:的一个焦点是(1,0),两个焦点与短轴的一个端点构成等边三角形.
(1)求椭圆C的方程;
(2)过点Q(4,0)且不与坐标轴垂直的直线l交椭圆C于A、B两点,设点A关于x轴的
对称点为A1.求证:直线A1B过x轴上一定点,并求出此定点坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的两个焦点为F1,F2,椭圆上一点M
满足.
(1)求椭圆的方程;
(2)若直线L:y=与椭圆恒有不同交点A,B,且(O为坐标原点),求实数k的范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知动圆过定点P(1,0),且与定直线l:x=-1相切,点C在l上.
(1)求动圆圆心的轨迹M的方程;
(2)设过点P,且斜率为-的直线与曲线M相交于A、B两点. 问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

定义:对于两个双曲线,,若的实轴是的虚轴,的虚轴是的实轴,则称,为共轭双曲线.现给出双曲线和双曲线,其离心率分别为.
(1)写出的渐近线方程(不用证明);
(2)试判断双曲线和双曲线是否为共轭双曲线?请加以证明.
(3)求值:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线的焦点为,准线为,点为抛物线C上的一点,且的外接圆圆心到准线的距离为

(I)求抛物线C的方程;
(II)若圆F的方程为,过点P作圆F的2条切线分别交轴于点,求面积的最小值时的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知过抛物线焦点的直线与抛物线相交于两点,若,则    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

以抛物线的焦点为圆心,且与双曲线的两条渐近线都相切的圆的方程为        .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆与双曲线有共同的焦点,椭圆的一个短轴端点为,直线与双曲线的一条渐近线平行,椭圆与双曲线的离心率分别为,则取值范围为(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案