精英家教网 > 高中数学 > 题目详情
已知动圆过定点P(1,0),且与定直线l:x=-1相切,点C在l上.
(1)求动圆圆心的轨迹M的方程;
(2)设过点P,且斜率为-的直线与曲线M相交于A、B两点. 问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由.
(1)   (2)不能

试题分析:(1)由抛物线的定义可得知,轨迹为抛物线, P(1,0)看作焦点,直线l:x=-1看作准线.从而得出轨迹方程.
(2) 先得出直线的方程,代入圆的方程中可求出直线与圆的交点,再利用两点间距离公式列出方程组,最后验证.
试题解析:(1)依题意,曲线M是以点P为焦点,直线l为准线的抛物线,     (2分)

所以曲线M的方程为,如上图.     (4分)
(2)由题意得,直线的方程为
   (6分)
 消去,得
解得   (10分)
存在这样的C点,使得为以为两腰的等腰三角形,


解得   (13分)
但是不符合(1),所以上面方程组无解,因此直线l上不存在点C使得是正三角形   (14分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知曲线.
(1)若曲线是焦点在轴上的椭圆,求的取值范围;
(2)设,过点的直线与曲线交于,两点,为坐标原点,若为直角,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

给定椭圆C:,若椭圆C的一个焦点为F(,0),其短轴上的一个端点到F的距离为
(I)求椭圆C的方程;
(II)已知斜率为k(k≠0)的直线l与椭圆C交于不同的两点A,B,点Q满足=0,其中N为椭圆的下顶点,求直线在y轴上截距的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知椭圆的离心率为在椭圆C上,A,B为椭圆C的左、右顶点.
(1)求椭圆C的方程:
(2)若P是椭圆上异于A,B的动点,连结AP,PB并延长,分别与右准线相交于M1,M2.问是否存在x轴上定点D,使得以M1M2为直径的圆恒过点D?若存在,求点D的坐标:若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分)点P为圆上一个动点,M为点P在y轴上的投影,动点Q满足
(1)求动点Q的轨迹C的方程;
(2)一条直线l过点,交曲线C于A、B两点,且A、B同在以点D(0,1)为圆心的圆上,求直线l的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线方程2x2-y2=2.
(1)求以A(2,1)为中点的双曲线的弦所在的直线方程;
(2)过点(1,1)能否作直线l,使l与双曲线交于Q1,Q2两点,且Q1,Q2两点的中点为(1,1)?如果存在,求出它的方程;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在原点,焦点在x轴上,离心率为,且经过点,直线交椭圆于不同的两点A,B.
(Ⅰ)求椭圆的方程;
(Ⅱ)求m的取值范围;
(Ⅲ)若直线不过点M,求证:直线MA、MB与x轴围成一个等腰三角形

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知O为坐标原点,P是曲线上到直线距离最小的点,且直线OP是双曲线 的一条渐近线。则的公共点个数是(  )
A.2B.1
C.0D.不能确定,与的值有关

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在等边中,若以为焦点的椭圆经过点,则该椭圆的离心率为

查看答案和解析>>

同步练习册答案