精英家教网 > 高中数学 > 题目详情
已知椭圆的两个焦点为F1,F2,椭圆上一点M
满足.
(1)求椭圆的方程;
(2)若直线L:y=与椭圆恒有不同交点A,B,且(O为坐标原点),求实数k的范围.
(1). (2)

试题分析:(1)设F1(-c,0),F2(c,0),
利用即可得到c的方程,所以, 
再根据点M在椭圆上得到另一方程,即可确定得到椭圆方程.
(2)由.
,利用,得到,再结合,由
得解.
试题解析:(1)设F1(-c,0),F2(c,0)


.        2分
 ①   又点M在椭圆上 ②
由①代入②得,整理为:
, .     4分
∴椭圆方程为.          5分
(2)由.     7分


.    10分

.         13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知点,点在直线上运动,过点垂直的直线和线段的垂直平分线相交于点
(1)求动点的轨迹的方程;
(2)过(1)中的轨迹上的定点作两条直线分别与轨迹相交于两点.试探究:当直线的斜率存在且倾斜角互补时,直线的斜率是否为定值?若是,求出这个定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆)的右焦点为,离心率为.
(Ⅰ)若,求椭圆的方程;
(Ⅱ)设直线与椭圆相交于两点,分别为线段的中点. 若坐标原点在以为直径的圆上,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知椭圆的离心率为在椭圆C上,A,B为椭圆C的左、右顶点.
(1)求椭圆C的方程:
(2)若P是椭圆上异于A,B的动点,连结AP,PB并延长,分别与右准线相交于M1,M2.问是否存在x轴上定点D,使得以M1M2为直径的圆恒过点D?若存在,求点D的坐标:若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某校同学设计一个如图所示的“蝴蝶形图案(阴影区域)”,其中是过抛物线焦点的两条弦,且其焦点,点轴上一点,记,其中为锐角.

(1)求抛物线方程;
(2)求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线方程2x2-y2=2.
(1)求以A(2,1)为中点的双曲线的弦所在的直线方程;
(2)过点(1,1)能否作直线l,使l与双曲线交于Q1,Q2两点,且Q1,Q2两点的中点为(1,1)?如果存在,求出它的方程;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在原点,离心率,右焦点为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的上顶点为,在椭圆上是否存在点,使得向量共线?若存在,求直线的方程;若不存在,简要说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线y2=-x与直线y=k(x+1)交于A、B两点.
(1)求证:OA⊥OB;
(2)当DAOB的面积等于时,求k的值. 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线的左右焦点分别为为双曲线的中心,是双曲线右支上的点,的内切圆的圆心为,且圆轴相切于点,过作直线的垂线,垂足为,若为双曲线的离心率,则(   )
A.B.
C.D.关系不确定

查看答案和解析>>

同步练习册答案