精英家教网 > 高中数学 > 题目详情
已知抛物线y2=-x与直线y=k(x+1)交于A、B两点.
(1)求证:OA⊥OB;
(2)当DAOB的面积等于时,求k的值. 
(1)证明见试题解析;(2).

试题分析:(1)要证明,可设出两点的坐标分别为,则,而从哪里来呢?考虑到两点在抛物线上,因此,下面的目标是求,我们把直线方程与抛物线方程联立,消去,得到关于的二次方程,正是这个二次方程的解,利用韦达定理,可得,从而证得结论;(2)如果直接利用,则,会发现很难把这个根式用表示出来,我们换一种思路,直线轴于点,因此分成两个三角形,从而有,这里,正好能利用(1)结论中的结论.
试题解析:(1)由方程组得:
,由韦达定理得:

,即.4分

(2)设直线与交于点,则


.10分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的两个焦点为F1,F2,椭圆上一点M
满足.
(1)求椭圆的方程;
(2)若直线L:y=与椭圆恒有不同交点A,B,且(O为坐标原点),求实数k的范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在原点,焦点在轴上,离心率为,长轴长为,直线交椭圆于不同的两点
(1)求椭圆的方程;
(2)求的取值范围;
(3)若直线不经过椭圆上的点,求证:直线的斜率互为相反数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角坐标系中,已知中心在原点,离心率为的椭圆E的一个焦点为圆的圆心.
⑴求椭圆E的方程;
⑵设P是椭圆E上一点,过P作两条斜率之积为的直线,当直线都与圆相切时,求P点坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆的左焦点为,离心率为,过点且与轴垂直的直线被椭圆截得的线段长为
(1)求椭圆方程;
(2)过点的直线与椭圆交于不同的两点,当面积最大时,求

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左、右焦点和短轴的两个端点构成边长为2的正方形.

(Ⅰ)求椭圆的方程;
(Ⅱ)过点的直线与椭圆相交于两点.点,记直线的斜率分别为,当最大时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

知椭圆的离心率为,定点,椭圆短轴的端点是,且.
(1)求椭圆的方程;
(2)设过点且斜率不为0的直线交椭圆两点.试问轴上是否存在异于的定点,使平分?若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

以抛物线的焦点为圆心,且与双曲线的两条渐近线都相切的圆的方程为        .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆与双曲线有共同的焦点,椭圆的一个短轴端点为,直线与双曲线的一条渐近线平行,椭圆与双曲线的离心率分别为,则取值范围为(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案