精英家教网 > 高中数学 > 题目详情
已知点在抛物线上.
(1)若的三个顶点都在抛物线上,记三边所在直线的斜率分别为,求的值;
(2)若四边形的四个顶点都在抛物线上,记四边所在直线的斜率分别为,求的值.
(1)1,(2)0.

试题分析:
(1)利用抛物线方程将横坐标用纵坐标表示,即结合两点斜率公式进行化简求值,
(2)类似(1)的解法,
本题实质是抛物线参数方程的应用.求代数的值就是消去所有参数的过程,用尽量少的参数正确表示解析式
试题解析:
解:(1)由点在抛物线,得抛物线,  3分

.    7分
(2)另设,则. 10分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设椭圆的方程为 ,斜率为1的直线不经过原点,而且与椭圆相交于两点,为线段的中点.
(1)问:直线能否垂直?若能,求之间满足的关系式;若不能,说明理由;
(2)已知的中点,且点在椭圆上.若,求之间满足的关系式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线的顶在坐标原点,焦点到直线的距离是
(1)求抛物线的方程;
(2)若直线与抛物线交于两点,设线段的中垂线与轴交于点 ,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左、右焦点分别为,椭圆上的点满足,且的面积
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存在直线,使与椭圆交于不同的两点,且线段恰被直线平分?若存在,求出的斜率取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆E的中心是原点O,其右焦点为F(2,0),过x轴上一点A(3,0)作直线与椭圆E相交于P,Q两点,且的最大值为.

(Ⅰ)求椭圆E的方程;
(Ⅱ)设,过点P且平行于y轴的直线与椭圆E相交于另一点M,试问M,F,Q是否共线,若共线请证明;反之说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知是抛物线上的两个点,点的坐标为,直线的斜率为k, 为坐标原点.
(Ⅰ)若抛物线的焦点在直线的下方,求k的取值范围;
(Ⅱ)设C为W上一点,且,过两点分别作W的切线,记两切线的交点为,求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左、右焦点分别为为原点.
(1)如图1,点为椭圆上的一点,的中点,且,求点轴的距离;

(2)如图2,直线与椭圆相交于两点,若在椭圆上存在点,使四边形为平行四边形,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆的长轴为AB,过点B的直线
轴垂直,椭圆的离心率,F为椭圆的左焦点,且

(1)求此椭圆的标准方程;
(2)设P是此椭圆上异于A,B的任意一点, 轴,H为垂足,延长HP到点Q,使得HP=PQ,连接AQ并延长交直线于点,的中点,判定直线与以为直径的圆O位置关系。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线的左焦点为F1,左、右顶点分别为A1、A2,P为双曲线上任意一点,则分别以线段PF1,A1A2为直径的两个圆的位置关系为(   )
A.相交B.相切C.相离D.以上情况都有可能

查看答案和解析>>

同步练习册答案