精英家教网 > 高中数学 > 题目详情
以直角坐标系的原点为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位.已知直线l的极坐标方程为ρsin(θ-
π
3
)=6
,圆C的参数方程为
x=10cosθ
y=10sinθ
,(θ为参数),求直线l被圆C截得的弦长.
分析:先将直线的极坐标方程化成普通方程,然后将圆的参数方程化为普通方程,利用点到直线的距离公式求出点C到直线的距离,最后用垂径公式求出弦长即可.
解答:解:由ρsin(θ-
π
3
)=ρ(
1
2
sinθ-
3
2
cosθ)=6得ρsinθ-
3
ρcosθ
=12.
y-
3
x=12.

将圆的参数方程化为普通方程为x2+y2=10.圆心为C(0,0),半径为10.
∴点C到直线的距离为d=
|0+0+12|
3+1
=6

∴直线l被圆截得的弦长为2
102-62
=16.
点评:本题主要考查直线和圆的极坐标与参数方程,求弦长,考查运算求解能力及转化的思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(坐标系与参数方程选做题)以直角坐标系的原点为极点,x轴的正半轴为极轴,并在两种坐标系中取相同的长度单位.已知圆C的参数方程为
x=2cosα
y=2sinα
(α为参数),直线l的极坐标方程为ρsin(θ+
π
4
)=
2
,则直线l被圆C所截的弦长为
2
2
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

以直角坐标系的原点为极点,x轴的非负半轴为极轴,并在两种坐标系中取相同的长度单位,点M的极坐标是(4,
3
)
,则点M直角坐标是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(选修4-4:坐标与参数方程) 
以直角坐标系的原点为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位.
已知直线ι的极坐标方程为ρsin(θ-
π
3
)=6
,圆C的参数方程为
x=10cos θ
y=10sin θ
(θ为参数),求直线ι被圆C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(注意:本小题为选做题,A,B两题选做其中一题,若都做了,则按A题答案给分)
A.当x,y满足条件|x-1|+|y+1|<1时,变量u=
x-1
y-2
的取值范围是
-
1
3
<u<
1
3
-
1
3
<u<
1
3

B.以直角坐标系的原点为极点,x轴的正半轴为极轴,并在两种坐标系中取相同的长度单位.已知直线的极坐标方程为θ=
π
4
(ρ∈R),它与曲线
x=1+2cosα
y=2+2sinα
(α为参数)相交于A,B两点,则以线段AB为直径的圆的面积为
2
2

查看答案和解析>>

同步练习册答案