精英家教网 > 高中数学 > 题目详情
10.计算机执行如图的程序段后,输出的结果是(  )
A.1,4B.4,1C.4,-2D.1,-2

分析 分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用顺序结构计算变量a,b的值,并输出,逐行分析程序各语句的功能不难得到结果.

解答 解:根据题意,模拟程序的运行,可得
a=1
b=3
a=a+b=3+1=4,
b=a-b=4-3=1.
故输出的变量a,b的值分别为:4,1
故选:B.

点评 根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知数列{an}中,a1=0,其前n项和Sn满足${S_n}=n{a_n}+\frac{1}{2}n({n-1})$.
(1)求数列{an}的通项公式;
(2)设${b_n}=\left\{\begin{array}{l}n•{2^{a_n}},n=2k-1\\ \frac{1}{{{n^2}+2n}},n=2k\end{array}\right.({k∈{{N}^*}})$,求数列{bn}的前2n项和T2n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在直角坐标系xoy中,椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点分别为F1,F2,F2也是抛物线C2:y2=4x的焦点,点M为C1与C2在第一象限的交点,且$|{M{F_2}}|=\frac{5}{3}$.
(1)求C1的方程;
(2)在C1上任取一点P,过点P作x轴的垂线段PD,D为垂足,若动点N满足$\overrightarrow{DP}=\frac{{\sqrt{3}}}{2}\overrightarrow{DN}$,当点P在C1上运动时,求点N的轨迹E的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设Sn是等差数列{an}的前n项和,若a4+a7+a10=21,则S13=(  )
A.100B.91C.81D.71

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设命题P:实数x满足2x2-5ax-3a2<0,其中a>0,命题q:实数x满足$\left\{{\begin{array}{l}{2sinx>1}\\{{x^2}-x-2<0}\end{array}}\right.$.
(1)若a=2,且p∧q为真,求实数x的取值范围;
(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.把函数y=sin(x+$\frac{π}{6}$)图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将图象向右平移$\frac{π}{3}$个单位,那么所得图象的一条对称轴为(  )
A.x=$\frac{π}{4}$B.x=$\frac{π}{2}$C.x=$\frac{π}{6}$D.x=π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=ln\frac{ex}{2}-f'(1)•x$,g(x)=$\frac{3}{2}$x-$\frac{2a}{x}$-f(x) (其中a∈R).
(1)求 f(x)的单调区间;
(2)若函数 g(x)在区间[2,+∞)上为增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若$|{\overrightarrow a}|=4$,$|{\overrightarrow b}|=3$,$\overrightarrow a,\overrightarrow b$的夹角为60°,则$|{\overrightarrow a+\overrightarrow b}|$=(  )
A.$\sqrt{13}$B.$\sqrt{15}$C.$\sqrt{19}$D.$\sqrt{37}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.若$\frac{1}{2}≤x≤8$,求函数y=(log2x-1)(log2x-2)的值域.

查看答案和解析>>

同步练习册答案