精英家教网 > 高中数学 > 题目详情
如图,从A1(1,0,0),A2(2,0,0),B1(0,1,0,)B2(0,2,0),C1(0,0,1),C2(0,0,2)这6个点中随机选取3个点。
(1)求这3点与原点O恰好是正三棱锥的四个顶点的概率;
(2)求这3点与原点O共面的概率。
解:(1)总的结果数为20种,则满足条件的种数为2种所以所求概率为
(2)满足条件的情况为,所以所求概率为
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•江西)如图,从A1(1,0,0),A2(2,0,0),B1(0,2,0),B2(0,2,0),C1(0,0,1),C2(0,0,2)这6个点中随机选取3个点,将这3个点及原点O两两相连构成一个“立体”,记该“立体”的体积为随机变量V(如果选取的3个点与原点在同一个平面内,此时“立体”的体积V=0).
(1)求V=0的概率;
(2)求V的分布列及数学期望EV.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西)如图,从A1(1,0,0),A2(2,0,0),B1(0,1,0,)B2(0,2,0),C1(0,0,1),C2(0,0,2)这6个点中随机选取3个点.
(1)求着3点与原点O恰好是正三棱锥的四个顶点的概率;
(2)求着3点与原点O共面的概率.

查看答案和解析>>

科目:高中数学 来源:高考真题 题型:解答题

如图,从A1(1,0,0),A2(2,0,0),B1(0,2,0),B2(0,2,0),C1(0,0,1),C2(0,0,2)这6个点中随机选取3个点,将这3个点及原点O两两相连构成一个“立体”,记该“立体”的体积为随机变量V(如果选取的3个点与原点在同一个平面内,此时“立体”的体积V=0)。
(1)求V=0的概率;
(2)求V的分布列及数学期望EV。

查看答案和解析>>

科目:高中数学 来源:2012年江西省高考数学试卷(文科)(解析版) 题型:解答题

如图,从A1(1,0,0),A2(2,0,0),B1(0,1,0,)B2(0,2,0),C1(0,0,1),C2(0,0,2)这6个点中随机选取3个点.
(1)求着3点与原点O恰好是正三棱锥的四个顶点的概率;
(2)求着3点与原点O共面的概率.

查看答案和解析>>

同步练习册答案